Caspase 2 in apoptosis, the dna damage response and tumour suppression: enigma no more?

Caspase 2 in apoptosis, the dna damage response and tumour suppression: enigma no more?

Play all audios:

Loading...

ABSTRACT Aberrations in proteins that control apoptosis and cell survival are common in cancer. These aberrations often reside in signalling proteins that control the activation of the


apoptotic machinery or in the Bcl-2 family of proteins that control caspase activation. Recent evidence suggests that caspase 2, one of the most evolutionarily conserved caspases, may have


multiple roles in the DNA damage response, cell cycle regulation and tumour suppression. These findings are unexpected and have important implications for our understanding of tumorigenesis


and the treatment of cancer. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CASPASE-2 REGULATES S-PHASE CELL CYCLE EVENTS TO PROTECT FROM DNA DAMAGE ACCUMULATION INDEPENDENT OF APOPTOSIS


Article 30 October 2021 OF THE MANY CELLULAR RESPONSES ACTIVATED BY TP53, WHICH ONES ARE CRITICAL FOR TUMOUR SUPPRESSION? Article 08 April 2022 PPM1D ACTIVITY PROMOTES CELLULAR


TRANSFORMATION BY PREVENTING SENESCENCE AND CELL DEATH Article Open access 05 September 2024 REFERENCES * Kumar, S. Caspase function in programmed cell death. _Cell Death Differ._ 14, 32–43


(2007). Article  CAS  PubMed  Google Scholar  * Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. _Cell Death Differ._ 14, 10–22


(2007). Article  CAS  PubMed  Google Scholar  * Bao, Q. & Shi, Y. Apoptosome: a platform for the activation of initiator caspases. _Cell Death Differ._ 14, 56–65 (2007). Article  CAS 


PubMed  Google Scholar  * Pop, C. & Salvesen, G. S. Human caspases: activation, specificity, and regulation. _J. Biol. Chem._ 284, 21777–21781 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. & Vandenabeele, P. Caspases in cell survival, proliferation and differentiation. _Cell Death


Differ._ 14, 44–55 (2007). Article  CAS  PubMed  Google Scholar  * Kumar, S., Tomooka, Y. & Noda, M. Identification of a set of genes with developmentally down-regulated expression in


the mouse brain. _Biochem. Biophys. Res. Commun._ 185, 1155–1161 (1992). Article  CAS  PubMed  Google Scholar  * Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G. & Jenkins, N. A.


Induction of apoptosis by the mouse _Nedd2_ gene, which encodes a protein similar to the product of the _Caenorhabditis elegans_ cell death gene _ced-3_ and the mammalian IL-1β-converting


enzyme. _Genes Dev._ 8, 1613–1626 (1994). Article  CAS  PubMed  Google Scholar  * Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J. _Ich-1_, an _Ice/ced-3_-related gene, encodes both


positive and negative regulators of programmed cell death. _Cell_ 78, 739–750 (1994). Article  CAS  PubMed  Google Scholar  * Kitevska, T., Spencer, D. M. & Hawkins, C. J. Caspase-2:


controversial killer or checkpoint controller? _Apoptosis_ 14, 829–848 (2009). Article  CAS  PubMed  Google Scholar  * Krumschnabel, G., Sohm, B., Bock, F., Manzl, C. & Villunger, A. The


enigma of caspase-2: the laymen's view. _Cell Death Differ._ 16, 195–207 (2009). Article  CAS  PubMed  Google Scholar  * Krumschnabel, G., Manzl, C. & Villunger, A. Caspase-2:


killer, savior and safeguard-emerging versatile roles for an ill-defined caspase. _Oncogene_ 28, 3093–3096 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Troy, C. M. &


Ribe, E. M. Caspase-2: vestigial remnant or master regulator? _Sci. Signal._ 1, pe42 (2008). Article  PubMed  CAS  Google Scholar  * Lassus, P., Opitz-Araya, X. & Lazebnik, Y.


Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. _Science_ 297, 1352–1354 (2002). Article  CAS  PubMed  Google Scholar  * Robertson, J. D.,


Enoksson, M., Suomela, M., Zhivotovsky, B. & Orrenius, S. Caspase-2 acts upstream of mitochondria to promote cytochrome _c_ release during etoposide-induced apoptosis. _J. Biol. Chem._


277, 29803–29809 (2002). Article  CAS  PubMed  Google Scholar  * Tyagi, A., Singh, R. P., Agarwal, C. & Agarwal, R. Silibinin activates p53–caspase 2 pathway and causes caspase-mediated


cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: evidence for a regulatory loop between p53 and caspase 2. _Carcinogenesis_ 27, 2269–2280 (2006).


Article  CAS  PubMed  Google Scholar  * Vakifahmetoglu, H., Olsson, M., Orrenius, S. & Zhivotovsky, B. Functional connection between p53 and caspase-2 is essential for apoptosis induced


by DNA damage. _Oncogene_ 25, 5683–5692 (2006). Article  CAS  PubMed  Google Scholar  * Baptiste-Okoh, N., Barsotti, A. M. & Prives, C. A role for caspase 2 and PIDD in the process of


p53-mediated apoptosis. _Proc. Natl Acad. Sci. USA_ 105, 1937–1942 (2008). Article  CAS  PubMed  Google Scholar  * Cao, X., Bennett, R. L. & May, W. S. c-Myc and caspase-2 are involved


in activating Bax during cytotoxic drug-induced apoptosis. _J. Biol. Chem._ 283, 14490–14496 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Madesh, M. et al. Execution of


superoxide-induced cell death by the proapoptotic Bcl-2-related proteins Bid and Bak. _Mol. Cell. Biol._ 29, 3099–3112 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Braga,


M. et al. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. _Apoptosis_ 13, 822–832 (2008). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Gu, H., Chen, X., Gao, G. & Dong, H. Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by


bortezomib in human myeloma cells. _Mol. Cancer Ther._ 7, 2298–2307 (2008). Article  CAS  PubMed  Google Scholar  * Shin, S. et al. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis


by processing procaspase-8. _EMBO J._ 24, 3532–3542 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wagner, K. W., Engels, I. H. & Deveraux, Q. L. Caspase-2 can function


upstream of bid cleavage in the TRAIL apoptosis pathway. _J. Biol. Chem._ 279, 35047–35052 (2004). Article  CAS  PubMed  Google Scholar  * Troy, C. M. et al. Death in the balance:


alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. _J. Neurosci._ 21, 5007–5016 (2001). Article  CAS  PubMed  Google


Scholar  * Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by β-amyloid. _J. Neurosci._ 20, 1386–1392 (2000). Article  CAS  PubMed  Google Scholar  * Nutt, L. K. et al.


Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. _Cell_ 123, 89–103 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nutt,


L. K. et al. Metabolic control of oocyte apoptosis mediated by 14-3-3ζ-regulated dephosphorylation of caspase-2. _Dev. Cell_ 16, 856–866 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. _Genes Dev._ 12, 1304–1314 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  *


O'Reilly, L. A. et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. _Cell Death Differ._ 9,


832–841 (2002). Article  CAS  PubMed  Google Scholar  * Colussi, P. A., Harvey, N. L. & Kumar, S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel


function for a caspase prodomain. _J. Biol. Chem._ 273, 24535–24542 (1998). Article  CAS  PubMed  Google Scholar  * Paroni, G., Henderson, C., Schneider, C. & Brancolini, C. Caspase-2


can trigger cytochrome _c_ release and apoptosis from the nucleus. _J. Biol. Chem._ 277, 15147–15161 (2002). Article  CAS  PubMed  Google Scholar  * Baliga, B. C. et al. Role of prodomain in


importin-mediated nuclear localization and activation of caspase-2. _J. Biol. Chem._ 278, 4899–4905 (2003). Article  CAS  PubMed  Google Scholar  * Harvey, N. L., Butt, A. J. & Kumar,


S. Functional activation of Nedd2/ICH-1 (caspase-2) is an early process in apoptosis. _J. Biol. Chem._ 272, 13134–13139 (1997). Article  CAS  PubMed  Google Scholar  * Li, H. et al.


Activation of caspase-2 in apoptosis. _J. Biol. Chem._ 272, 21010–21017 (1997). Article  CAS  PubMed  Google Scholar  * Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA


damage that bypasses p53, Bcl-2, and caspase-3. _Cell_ 133, 864–877 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ho, L. H. et al. A tumor suppressor function for


caspase-2. _Proc. Natl Acad. Sci. USA_ 106, 5336–5341 (2009). Article  CAS  PubMed  Google Scholar  * Shi, M. et al. DNA-PKcs–PIDDosome: a nuclear caspase-2-activating complex with role in


G2/M checkpoint maintenance. _Cell_ 136, 508–520 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pan, Y., Ren, K. H., He, H. W. & Shao, R. G. Knockdown of Chk1 sensitizes


human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. _Cancer Biol. Ther._ 8 32–39 (2009). Google


Scholar  * Kumar, S. & Colussi, P. A. Prodomains–adaptors–oligomerization: the pursuit of caspase activation in apoptosis. _Trends Biochem. Sci._ 24, 1–4 (1999). Article  CAS  PubMed 


Google Scholar  * Butt, A. J., Harvey, N. L., Parasivam, G. & Kumar, S. Dimerization and autoprocessing of the Nedd2 (caspase-2) precursor requires both the prodomain and the


carboxyl-terminal regions. _J. Biol. Chem._ 273, 6763–6768 (1998). Article  CAS  PubMed  Google Scholar  * Baliga, B. C., Read, S. H. & Kumar, S. The biochemical mechanism of caspase-2


activation. _Cell Death Differ._ 11, 1234–1241 (2004). Article  CAS  PubMed  Google Scholar  * Read, S. H., Baliga, B. C., Ekert, P. G., Vaux, D. L. & Kumar, S. A novel


Apaf-1-independent putative caspase-2 activation complex. _J. Cell Biol._ 159, 739–745 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ho, P. K., Jabbour, A. M., Ekert, P. G.


& Hawkins, C. J. Caspase-2 is resistant to inhibition by inhibitor of apoptosis proteins (IAPs) and can activate caspase-7. _FEBS J._ 272, 1401–1414 (2005). Article  CAS  PubMed  Google


Scholar  * Colussi, P. A., Harvey, N. L., Shearwin-Whyatt, L. M. & Kumar, S. Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. _J. Biol.


Chem._ 273, 26566–26570 (1998). Article  CAS  PubMed  Google Scholar  * Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to


genotoxic stress. _Science_ 304, 843–846 (2004). Article  CAS  PubMed  Google Scholar  * Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and


pro-survival NF-κB pathway. _EMBO J._ 26, 197–208 (2007). Article  CAS  PubMed  Google Scholar  * Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. _J. Cell Biol._


185, 291–303 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, I. R. et al. DNA damage- and stress-induced apoptosis occurs independently of PIDD. _Apoptosis_ 14,


1039–1049 (2009). Article  CAS  PubMed  Google Scholar  * Lin, C. F. et al. Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced


apoptosis. _J. Biol. Chem._ 279, 40755–40761 (2004). Article  CAS  PubMed  Google Scholar  * Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T. & Alnemri, E. S. Caspase-2


induces apoptosis by releasing proapoptotic proteins from mitochondria. _J. Biol. Chem._ 277, 13430–13437 (2002). Article  CAS  PubMed  Google Scholar  * Mohan, J. et al. Caspase-2 triggers


Bax–Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. _J. Biol. Chem._ 281, 17599–17611 (2006). Article  CAS  PubMed  Google Scholar  * Tu, S. et al.


_In situ_ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. _Nature Cell Biol._ 8, 72–77 (2006). Article  CAS  PubMed  Google Scholar  *


Mhaidat, N. M., Wang, Y., Kiejda, K. A., Zhang, X. D. & Hersey, P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. _Mol. Cancer Ther._ 6, 752–761


(2007). Article  CAS  PubMed  Google Scholar  * Ho, L. H., Read, S. H., Dorstyn, L., Lambrusco, L. & Kumar, S. Caspase-2 is required for cell death induced by cytoskeletal disruption.


_Oncogene_ 27, 3393–3404 (2008). Article  CAS  PubMed  Google Scholar  * McStay, G. P., Salvesen, G. S. & Green, D. R. Overlapping cleavage motif selectivity of caspases: implications


for analysis of apoptotic pathways. _Cell Death Differ._ 15, 322–331 (2008). Article  CAS  PubMed  Google Scholar  * Slee, E. A., Adrain, C. & Martin, S. J. Serial killers: ordering


caspase activation events in apoptosis. _Cell Death Differ._ 6, 1067–1074 (1999). Article  CAS  PubMed  Google Scholar  * Paroni, G., Henderson, C., Schneider, C. & Brancolini, C.


Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. _J. Biol. Chem._ 276, 21907–21915


(2001). Article  CAS  PubMed  Google Scholar  * Harvey, N. L. et al. Processing of the Nedd2 precursor by ICE-like proteases and granzyme B. _Genes Cells_ 1, 673–685 (1996). Article  CAS 


PubMed  Google Scholar  * Cullen, S. P. & Martin, S. J. Caspase activation pathways: some recent progress. _Cell Death Differ._ 16, 935–938 (2009). Article  CAS  PubMed  Google Scholar 


* Inoue, S., Browne, G., Melino, G. & Cohen, G. M. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. _Cell Death Differ._ 16, 1053–1061 (2009). Article  CAS 


PubMed  Google Scholar  * Marsden, V. S. et al. Bcl-2-regulated apoptosis and cytochrome _c_ release can occur independently of both caspase-2 and caspase-9. _J. Cell Biol._ 165, 775–780


(2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhivotovsky, B., Samali, A., Gahm, A. & Orrenius, S. Caspases: their intracellular localization and translocation during


apoptosis. _Cell Death Differ._ 6, 644–651 (1999). Article  CAS  PubMed  Google Scholar  * Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The _C. elegans_ cell death


gene _ced-3_ encodes a protein similar to mammalian interleukin-1β -converting enzyme. _Cell_ 75, 641–652 (1993). Article  CAS  PubMed  Google Scholar  * Daish, T. J., Mills, K. & Kumar,


S. _Drosophila_ caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. _Dev. Cell_ 7, 909–915 (2004). Article  CAS  PubMed  Google Scholar  *


Chew, S. K. et al. The apical caspase _dronc_ governs programmed and unprogrammed cell death in _Drosophila_. _Dev. Cell_ 7, 897–907 (2004). Article  CAS  PubMed  Google Scholar  * Morita,


Y. et al. Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of _ataxia telangiectasia-mutated_ (_Atm_)


gene function. _Cell Death Differ._ 8, 614–620 (2001). Article  CAS  PubMed  Google Scholar  * Zhang, Y. et al. Caspase-2 deficiency enhances aging-related traits in mice. _Mech. Ageing


Dev._ 128, 213–221 (2007). Article  CAS  PubMed  Google Scholar  * Kumar, S. et al. Apoptosis regulatory gene _NEDD2_ maps to human chromosome segment 7q34–35, a region frequently affected


in haematological neoplasms. _Hum. Genet._ 95, 641–644 (1995). Article  CAS  PubMed  Google Scholar  * Mrozek, K. Cytogenetic, molecular genetic, and clinical characteristics of acute


myeloid leukemia with a complex karyotype. _Semin. Oncol._ 35, 365–377 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Johansson, B., Mertens, F. & Mitelman, F.


Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci. _Genes Chromosomes Cancer_ 8, 205–218 (1993). Article  CAS  PubMed  Google Scholar  *


Holleman, A. et al. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. _Blood_ 106, 1817–1823 (2005).


Article  CAS  PubMed  Google Scholar  * Hofmann, W. K. et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. _Blood_ 98, 787–794 (2001). Article 


CAS  PubMed  Google Scholar  * Yoo, N. J. et al. Loss of caspase-2, -6 and -7 expression in gastric cancers. _APMIS_ 112, 330–335 (2004). Article  CAS  PubMed  Google Scholar  * Zohrabian,


V. M. et al. Gene expression profiling of metastatic brain cancer. _Oncol. Rep._ 18, 321–328 (2007). CAS  PubMed  Google Scholar  * Estrov, Z. et al. Caspase 2 and caspase 3 protein levels


as predictors of survival in acute myelogenous leukemia. _Blood_ 92, 3090–3097 (1998). CAS  PubMed  Google Scholar  * Faderl, S. et al. Caspase 2 and caspase 3 as predictors of complete


remission and survival in adults with acute lymphoblastic leukemia. _Clin. Cancer Res._ 5, 4041–4047 (1999). CAS  PubMed  Google Scholar  * Adams, J. M. et al. The _c-myc_ oncogene driven by


immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. _Nature_ 318, 533–538 (1985). Article  CAS  PubMed  Google Scholar  * Kuroda, J. & Taniwaki, M. Involvement of


BH3-only proteins in hematologic malignancies. _Crit. Rev. Oncol. Hematol._ 71, 89–101 (2009). Article  PubMed  Google Scholar  * Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is


a suppressor of Myc-induced mouse B cell leukemia. _Proc. Natl Acad. Sci. USA_ 101, 6164–6169 (2004). Article  CAS  Google Scholar  * Vakifahmetoglu, H. et al. DNA damage induces two


distinct modes of cell death in ovarian carcinomas. _Cell Death Differ._ 15, 555–566 (2008). Article  CAS  PubMed  Google Scholar  * Mendelsohn, A. R., Hamer, J. D., Wang, Z. B. & Brent,


R. Cyclin D3 activates caspase 2, connecting cell proliferation with cell death. _Proc. Natl Acad. Sci. USA_ 99, 6871–6876 (2002). Article  CAS  PubMed  Google Scholar  * Anderson, J. L. et


al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. _EMBO J._ 3 Sep 2009 (doi:10.1038/emboj.2009.253). * Lavin, M. F. Ataxia–telangiectasia: from a


rare disorder to a paradigm for cell signalling and cancer. _Nature Rev. Mol. Cell Biol._ 9, 759–769 (2008). Article  CAS  Google Scholar  * Wyman, C. & Kanaar, R. DNA double-strand


break repair: all's well that ends well. _Annu. Rev. Genet._ 40, 363–383 (2006). Article  CAS  PubMed  Google Scholar  * Olsson, M. et al. DISC-mediated activation of caspase-2 in DNA


damage-induced apoptosis. _Oncogene_ 28, 1949–1959 (2009). Article  CAS  PubMed  Google Scholar  * Bonzon, C., Bouchier-Hayes, L., Pagliari, L. J., Green, D. R. & Newmeyer, D. D.


Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. _Mol. Biol. Cell_ 17, 2150–2157 (2006). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Upton, J. P. et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. _Mol. Cell. Biol._ 28, 3943–3951 (2008). Article 


CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS I thank Donna Denton, Martin Lavin and Loretta Dorstyn for helpful comments. The work in my laboratory is


supported by the National Health and Medical Research Council of Australia and the Cancer Council of South Australia. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Haematology,


Sharad Kumar is at the Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA5000, Australia. [email protected], Sharad Kumar Authors * Sharad Kumar View author


publications You can also search for this author inPubMed Google Scholar RELATED LINKS RELATED LINKS DATABASES NATIONAL CANCER INSTITUTE DRUG DICTIONARY 5-fluorouracil cisplatin docetaxel


L-asparaginase prednisolone vincristine OMIM ALL AML FURTHER INFORMATION S. Kumar's homepage RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kumar,


S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?. _Nat Rev Cancer_ 9, 897–903 (2009). https://doi.org/10.1038/nrc2745 Download citation * Published:


05 November 2009 * Issue Date: December 2009 * DOI: https://doi.org/10.1038/nrc2745 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative