Play all audios:
ABSTRACT Aberrations in proteins that control apoptosis and cell survival are common in cancer. These aberrations often reside in signalling proteins that control the activation of the
apoptotic machinery or in the Bcl-2 family of proteins that control caspase activation. Recent evidence suggests that caspase 2, one of the most evolutionarily conserved caspases, may have
multiple roles in the DNA damage response, cell cycle regulation and tumour suppression. These findings are unexpected and have important implications for our understanding of tumorigenesis
and the treatment of cancer. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your
institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access
to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read
our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CASPASE-2 REGULATES S-PHASE CELL CYCLE EVENTS TO PROTECT FROM DNA DAMAGE ACCUMULATION INDEPENDENT OF APOPTOSIS
Article 30 October 2021 OF THE MANY CELLULAR RESPONSES ACTIVATED BY TP53, WHICH ONES ARE CRITICAL FOR TUMOUR SUPPRESSION? Article 08 April 2022 PPM1D ACTIVITY PROMOTES CELLULAR
TRANSFORMATION BY PREVENTING SENESCENCE AND CELL DEATH Article Open access 05 September 2024 REFERENCES * Kumar, S. Caspase function in programmed cell death. _Cell Death Differ._ 14, 32–43
(2007). Article CAS PubMed Google Scholar * Martinon, F. & Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. _Cell Death Differ._ 14, 10–22
(2007). Article CAS PubMed Google Scholar * Bao, Q. & Shi, Y. Apoptosome: a platform for the activation of initiator caspases. _Cell Death Differ._ 14, 56–65 (2007). Article CAS
PubMed Google Scholar * Pop, C. & Salvesen, G. S. Human caspases: activation, specificity, and regulation. _J. Biol. Chem._ 284, 21777–21781 (2009). Article CAS PubMed PubMed
Central Google Scholar * Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. & Vandenabeele, P. Caspases in cell survival, proliferation and differentiation. _Cell Death
Differ._ 14, 44–55 (2007). Article CAS PubMed Google Scholar * Kumar, S., Tomooka, Y. & Noda, M. Identification of a set of genes with developmentally down-regulated expression in
the mouse brain. _Biochem. Biophys. Res. Commun._ 185, 1155–1161 (1992). Article CAS PubMed Google Scholar * Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G. & Jenkins, N. A.
Induction of apoptosis by the mouse _Nedd2_ gene, which encodes a protein similar to the product of the _Caenorhabditis elegans_ cell death gene _ced-3_ and the mammalian IL-1β-converting
enzyme. _Genes Dev._ 8, 1613–1626 (1994). Article CAS PubMed Google Scholar * Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J. _Ich-1_, an _Ice/ced-3_-related gene, encodes both
positive and negative regulators of programmed cell death. _Cell_ 78, 739–750 (1994). Article CAS PubMed Google Scholar * Kitevska, T., Spencer, D. M. & Hawkins, C. J. Caspase-2:
controversial killer or checkpoint controller? _Apoptosis_ 14, 829–848 (2009). Article CAS PubMed Google Scholar * Krumschnabel, G., Sohm, B., Bock, F., Manzl, C. & Villunger, A. The
enigma of caspase-2: the laymen's view. _Cell Death Differ._ 16, 195–207 (2009). Article CAS PubMed Google Scholar * Krumschnabel, G., Manzl, C. & Villunger, A. Caspase-2:
killer, savior and safeguard-emerging versatile roles for an ill-defined caspase. _Oncogene_ 28, 3093–3096 (2009). Article CAS PubMed PubMed Central Google Scholar * Troy, C. M. &
Ribe, E. M. Caspase-2: vestigial remnant or master regulator? _Sci. Signal._ 1, pe42 (2008). Article PubMed CAS Google Scholar * Lassus, P., Opitz-Araya, X. & Lazebnik, Y.
Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. _Science_ 297, 1352–1354 (2002). Article CAS PubMed Google Scholar * Robertson, J. D.,
Enoksson, M., Suomela, M., Zhivotovsky, B. & Orrenius, S. Caspase-2 acts upstream of mitochondria to promote cytochrome _c_ release during etoposide-induced apoptosis. _J. Biol. Chem._
277, 29803–29809 (2002). Article CAS PubMed Google Scholar * Tyagi, A., Singh, R. P., Agarwal, C. & Agarwal, R. Silibinin activates p53–caspase 2 pathway and causes caspase-mediated
cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: evidence for a regulatory loop between p53 and caspase 2. _Carcinogenesis_ 27, 2269–2280 (2006).
Article CAS PubMed Google Scholar * Vakifahmetoglu, H., Olsson, M., Orrenius, S. & Zhivotovsky, B. Functional connection between p53 and caspase-2 is essential for apoptosis induced
by DNA damage. _Oncogene_ 25, 5683–5692 (2006). Article CAS PubMed Google Scholar * Baptiste-Okoh, N., Barsotti, A. M. & Prives, C. A role for caspase 2 and PIDD in the process of
p53-mediated apoptosis. _Proc. Natl Acad. Sci. USA_ 105, 1937–1942 (2008). Article CAS PubMed Google Scholar * Cao, X., Bennett, R. L. & May, W. S. c-Myc and caspase-2 are involved
in activating Bax during cytotoxic drug-induced apoptosis. _J. Biol. Chem._ 283, 14490–14496 (2008). Article CAS PubMed PubMed Central Google Scholar * Madesh, M. et al. Execution of
superoxide-induced cell death by the proapoptotic Bcl-2-related proteins Bid and Bak. _Mol. Cell. Biol._ 29, 3099–3112 (2009). Article CAS PubMed PubMed Central Google Scholar * Braga,
M. et al. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. _Apoptosis_ 13, 822–832 (2008). Article
CAS PubMed PubMed Central Google Scholar * Gu, H., Chen, X., Gao, G. & Dong, H. Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by
bortezomib in human myeloma cells. _Mol. Cancer Ther._ 7, 2298–2307 (2008). Article CAS PubMed Google Scholar * Shin, S. et al. Caspase-2 primes cancer cells for TRAIL-mediated apoptosis
by processing procaspase-8. _EMBO J._ 24, 3532–3542 (2005). Article CAS PubMed PubMed Central Google Scholar * Wagner, K. W., Engels, I. H. & Deveraux, Q. L. Caspase-2 can function
upstream of bid cleavage in the TRAIL apoptosis pathway. _J. Biol. Chem._ 279, 35047–35052 (2004). Article CAS PubMed Google Scholar * Troy, C. M. et al. Death in the balance:
alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. _J. Neurosci._ 21, 5007–5016 (2001). Article CAS PubMed Google
Scholar * Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by β-amyloid. _J. Neurosci._ 20, 1386–1392 (2000). Article CAS PubMed Google Scholar * Nutt, L. K. et al.
Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. _Cell_ 123, 89–103 (2005). Article CAS PubMed PubMed Central Google Scholar * Nutt,
L. K. et al. Metabolic control of oocyte apoptosis mediated by 14-3-3ζ-regulated dephosphorylation of caspase-2. _Dev. Cell_ 16, 856–866 (2009). Article CAS PubMed PubMed Central Google
Scholar * Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. _Genes Dev._ 12, 1304–1314 (1998). Article CAS PubMed PubMed Central Google Scholar *
O'Reilly, L. A. et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. _Cell Death Differ._ 9,
832–841 (2002). Article CAS PubMed Google Scholar * Colussi, P. A., Harvey, N. L. & Kumar, S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel
function for a caspase prodomain. _J. Biol. Chem._ 273, 24535–24542 (1998). Article CAS PubMed Google Scholar * Paroni, G., Henderson, C., Schneider, C. & Brancolini, C. Caspase-2
can trigger cytochrome _c_ release and apoptosis from the nucleus. _J. Biol. Chem._ 277, 15147–15161 (2002). Article CAS PubMed Google Scholar * Baliga, B. C. et al. Role of prodomain in
importin-mediated nuclear localization and activation of caspase-2. _J. Biol. Chem._ 278, 4899–4905 (2003). Article CAS PubMed Google Scholar * Harvey, N. L., Butt, A. J. & Kumar,
S. Functional activation of Nedd2/ICH-1 (caspase-2) is an early process in apoptosis. _J. Biol. Chem._ 272, 13134–13139 (1997). Article CAS PubMed Google Scholar * Li, H. et al.
Activation of caspase-2 in apoptosis. _J. Biol. Chem._ 272, 21010–21017 (1997). Article CAS PubMed Google Scholar * Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA
damage that bypasses p53, Bcl-2, and caspase-3. _Cell_ 133, 864–877 (2008). Article CAS PubMed PubMed Central Google Scholar * Ho, L. H. et al. A tumor suppressor function for
caspase-2. _Proc. Natl Acad. Sci. USA_ 106, 5336–5341 (2009). Article CAS PubMed Google Scholar * Shi, M. et al. DNA-PKcs–PIDDosome: a nuclear caspase-2-activating complex with role in
G2/M checkpoint maintenance. _Cell_ 136, 508–520 (2009). Article CAS PubMed PubMed Central Google Scholar * Pan, Y., Ren, K. H., He, H. W. & Shao, R. G. Knockdown of Chk1 sensitizes
human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. _Cancer Biol. Ther._ 8 32–39 (2009). Google
Scholar * Kumar, S. & Colussi, P. A. Prodomains–adaptors–oligomerization: the pursuit of caspase activation in apoptosis. _Trends Biochem. Sci._ 24, 1–4 (1999). Article CAS PubMed
Google Scholar * Butt, A. J., Harvey, N. L., Parasivam, G. & Kumar, S. Dimerization and autoprocessing of the Nedd2 (caspase-2) precursor requires both the prodomain and the
carboxyl-terminal regions. _J. Biol. Chem._ 273, 6763–6768 (1998). Article CAS PubMed Google Scholar * Baliga, B. C., Read, S. H. & Kumar, S. The biochemical mechanism of caspase-2
activation. _Cell Death Differ._ 11, 1234–1241 (2004). Article CAS PubMed Google Scholar * Read, S. H., Baliga, B. C., Ekert, P. G., Vaux, D. L. & Kumar, S. A novel
Apaf-1-independent putative caspase-2 activation complex. _J. Cell Biol._ 159, 739–745 (2002). Article CAS PubMed PubMed Central Google Scholar * Ho, P. K., Jabbour, A. M., Ekert, P. G.
& Hawkins, C. J. Caspase-2 is resistant to inhibition by inhibitor of apoptosis proteins (IAPs) and can activate caspase-7. _FEBS J._ 272, 1401–1414 (2005). Article CAS PubMed Google
Scholar * Colussi, P. A., Harvey, N. L., Shearwin-Whyatt, L. M. & Kumar, S. Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. _J. Biol.
Chem._ 273, 26566–26570 (1998). Article CAS PubMed Google Scholar * Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to
genotoxic stress. _Science_ 304, 843–846 (2004). Article CAS PubMed Google Scholar * Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and
pro-survival NF-κB pathway. _EMBO J._ 26, 197–208 (2007). Article CAS PubMed Google Scholar * Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. _J. Cell Biol._
185, 291–303 (2009). Article CAS PubMed PubMed Central Google Scholar * Kim, I. R. et al. DNA damage- and stress-induced apoptosis occurs independently of PIDD. _Apoptosis_ 14,
1039–1049 (2009). Article CAS PubMed Google Scholar * Lin, C. F. et al. Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced
apoptosis. _J. Biol. Chem._ 279, 40755–40761 (2004). Article CAS PubMed Google Scholar * Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T. & Alnemri, E. S. Caspase-2
induces apoptosis by releasing proapoptotic proteins from mitochondria. _J. Biol. Chem._ 277, 13430–13437 (2002). Article CAS PubMed Google Scholar * Mohan, J. et al. Caspase-2 triggers
Bax–Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. _J. Biol. Chem._ 281, 17599–17611 (2006). Article CAS PubMed Google Scholar * Tu, S. et al.
_In situ_ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. _Nature Cell Biol._ 8, 72–77 (2006). Article CAS PubMed Google Scholar *
Mhaidat, N. M., Wang, Y., Kiejda, K. A., Zhang, X. D. & Hersey, P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. _Mol. Cancer Ther._ 6, 752–761
(2007). Article CAS PubMed Google Scholar * Ho, L. H., Read, S. H., Dorstyn, L., Lambrusco, L. & Kumar, S. Caspase-2 is required for cell death induced by cytoskeletal disruption.
_Oncogene_ 27, 3393–3404 (2008). Article CAS PubMed Google Scholar * McStay, G. P., Salvesen, G. S. & Green, D. R. Overlapping cleavage motif selectivity of caspases: implications
for analysis of apoptotic pathways. _Cell Death Differ._ 15, 322–331 (2008). Article CAS PubMed Google Scholar * Slee, E. A., Adrain, C. & Martin, S. J. Serial killers: ordering
caspase activation events in apoptosis. _Cell Death Differ._ 6, 1067–1074 (1999). Article CAS PubMed Google Scholar * Paroni, G., Henderson, C., Schneider, C. & Brancolini, C.
Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. _J. Biol. Chem._ 276, 21907–21915
(2001). Article CAS PubMed Google Scholar * Harvey, N. L. et al. Processing of the Nedd2 precursor by ICE-like proteases and granzyme B. _Genes Cells_ 1, 673–685 (1996). Article CAS
PubMed Google Scholar * Cullen, S. P. & Martin, S. J. Caspase activation pathways: some recent progress. _Cell Death Differ._ 16, 935–938 (2009). Article CAS PubMed Google Scholar
* Inoue, S., Browne, G., Melino, G. & Cohen, G. M. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. _Cell Death Differ._ 16, 1053–1061 (2009). Article CAS
PubMed Google Scholar * Marsden, V. S. et al. Bcl-2-regulated apoptosis and cytochrome _c_ release can occur independently of both caspase-2 and caspase-9. _J. Cell Biol._ 165, 775–780
(2004). Article CAS PubMed PubMed Central Google Scholar * Zhivotovsky, B., Samali, A., Gahm, A. & Orrenius, S. Caspases: their intracellular localization and translocation during
apoptosis. _Cell Death Differ._ 6, 644–651 (1999). Article CAS PubMed Google Scholar * Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The _C. elegans_ cell death
gene _ced-3_ encodes a protein similar to mammalian interleukin-1β -converting enzyme. _Cell_ 75, 641–652 (1993). Article CAS PubMed Google Scholar * Daish, T. J., Mills, K. & Kumar,
S. _Drosophila_ caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. _Dev. Cell_ 7, 909–915 (2004). Article CAS PubMed Google Scholar *
Chew, S. K. et al. The apical caspase _dronc_ governs programmed and unprogrammed cell death in _Drosophila_. _Dev. Cell_ 7, 897–907 (2004). Article CAS PubMed Google Scholar * Morita,
Y. et al. Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of _ataxia telangiectasia-mutated_ (_Atm_)
gene function. _Cell Death Differ._ 8, 614–620 (2001). Article CAS PubMed Google Scholar * Zhang, Y. et al. Caspase-2 deficiency enhances aging-related traits in mice. _Mech. Ageing
Dev._ 128, 213–221 (2007). Article CAS PubMed Google Scholar * Kumar, S. et al. Apoptosis regulatory gene _NEDD2_ maps to human chromosome segment 7q34–35, a region frequently affected
in haematological neoplasms. _Hum. Genet._ 95, 641–644 (1995). Article CAS PubMed Google Scholar * Mrozek, K. Cytogenetic, molecular genetic, and clinical characteristics of acute
myeloid leukemia with a complex karyotype. _Semin. Oncol._ 35, 365–377 (2008). Article CAS PubMed PubMed Central Google Scholar * Johansson, B., Mertens, F. & Mitelman, F.
Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci. _Genes Chromosomes Cancer_ 8, 205–218 (1993). Article CAS PubMed Google Scholar *
Holleman, A. et al. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. _Blood_ 106, 1817–1823 (2005).
Article CAS PubMed Google Scholar * Hofmann, W. K. et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. _Blood_ 98, 787–794 (2001). Article
CAS PubMed Google Scholar * Yoo, N. J. et al. Loss of caspase-2, -6 and -7 expression in gastric cancers. _APMIS_ 112, 330–335 (2004). Article CAS PubMed Google Scholar * Zohrabian,
V. M. et al. Gene expression profiling of metastatic brain cancer. _Oncol. Rep._ 18, 321–328 (2007). CAS PubMed Google Scholar * Estrov, Z. et al. Caspase 2 and caspase 3 protein levels
as predictors of survival in acute myelogenous leukemia. _Blood_ 92, 3090–3097 (1998). CAS PubMed Google Scholar * Faderl, S. et al. Caspase 2 and caspase 3 as predictors of complete
remission and survival in adults with acute lymphoblastic leukemia. _Clin. Cancer Res._ 5, 4041–4047 (1999). CAS PubMed Google Scholar * Adams, J. M. et al. The _c-myc_ oncogene driven by
immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. _Nature_ 318, 533–538 (1985). Article CAS PubMed Google Scholar * Kuroda, J. & Taniwaki, M. Involvement of
BH3-only proteins in hematologic malignancies. _Crit. Rev. Oncol. Hematol._ 71, 89–101 (2009). Article PubMed Google Scholar * Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is
a suppressor of Myc-induced mouse B cell leukemia. _Proc. Natl Acad. Sci. USA_ 101, 6164–6169 (2004). Article CAS Google Scholar * Vakifahmetoglu, H. et al. DNA damage induces two
distinct modes of cell death in ovarian carcinomas. _Cell Death Differ._ 15, 555–566 (2008). Article CAS PubMed Google Scholar * Mendelsohn, A. R., Hamer, J. D., Wang, Z. B. & Brent,
R. Cyclin D3 activates caspase 2, connecting cell proliferation with cell death. _Proc. Natl Acad. Sci. USA_ 99, 6871–6876 (2002). Article CAS PubMed Google Scholar * Anderson, J. L. et
al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. _EMBO J._ 3 Sep 2009 (doi:10.1038/emboj.2009.253). * Lavin, M. F. Ataxia–telangiectasia: from a
rare disorder to a paradigm for cell signalling and cancer. _Nature Rev. Mol. Cell Biol._ 9, 759–769 (2008). Article CAS Google Scholar * Wyman, C. & Kanaar, R. DNA double-strand
break repair: all's well that ends well. _Annu. Rev. Genet._ 40, 363–383 (2006). Article CAS PubMed Google Scholar * Olsson, M. et al. DISC-mediated activation of caspase-2 in DNA
damage-induced apoptosis. _Oncogene_ 28, 1949–1959 (2009). Article CAS PubMed Google Scholar * Bonzon, C., Bouchier-Hayes, L., Pagliari, L. J., Green, D. R. & Newmeyer, D. D.
Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. _Mol. Biol. Cell_ 17, 2150–2157 (2006). Article CAS PubMed PubMed Central
Google Scholar * Upton, J. P. et al. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. _Mol. Cell. Biol._ 28, 3943–3951 (2008). Article
CAS PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS I thank Donna Denton, Martin Lavin and Loretta Dorstyn for helpful comments. The work in my laboratory is
supported by the National Health and Medical Research Council of Australia and the Cancer Council of South Australia. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Haematology,
Sharad Kumar is at the Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA5000, Australia. [email protected], Sharad Kumar Authors * Sharad Kumar View author
publications You can also search for this author inPubMed Google Scholar RELATED LINKS RELATED LINKS DATABASES NATIONAL CANCER INSTITUTE DRUG DICTIONARY 5-fluorouracil cisplatin docetaxel
L-asparaginase prednisolone vincristine OMIM ALL AML FURTHER INFORMATION S. Kumar's homepage RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kumar,
S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?. _Nat Rev Cancer_ 9, 897–903 (2009). https://doi.org/10.1038/nrc2745 Download citation * Published:
05 November 2009 * Issue Date: December 2009 * DOI: https://doi.org/10.1038/nrc2745 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get
shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative