Systems pathology—taking molecular pathology into a new dimension

Systems pathology—taking molecular pathology into a new dimension

Play all audios:

Loading...

ABSTRACT The wealth of morphological, histological, and molecular data from human cancers available to pathologists means that pathology is poised to become a truly quantitative systems


science. By measuring morphological parameters such as tumor stage and grade, and by measuring molecular biomarkers such as hormone receptor status, pathologists have sometimes accurately


predicted what will happen to a patient's tumor. While 'omic' technologies have seemingly improved prognostication and prediction, some molecular 'signatures' are


not useful in clinical practice because of the failure to independently validate these approaches. Many associations between gene 'signatures' and clinical response are correlative


rather than mechanistic, and such associations are poor predictors of how cellular biochemical networks will behave in perturbed, diseased cells. Using systems biology, the dynamics of


reactions in cells and the behavior between cells can be integrated into models of cancer. The challenge is how to integrate multiple data from the clinic into tractable models using


mathematical models and systems biology, and how to make the resultant model sufficiently robust to be of practical use. We discuss the difficulties in using mathematics to model cancer, and


review some approaches that may be used to allow systems biology to be successfully applied in the clinic. KEY POINTS * Morphological assessment by histopathology can be a good surrogate


for underlying molecular biology, which may be used in treatment decision-making * Drug mechanisms of action and signaling pathways that may not be understood fully may be predicted by


mathematical models * Cancer is dynamic, complex, and heterogeneous, and therefore requires integration of molecular biology and pathology data in new predictive frameworks that embrace the


dynamic nature of the disease * Developments in mathematics and quantitative pathology provide the foundation for this new predictive framework to aid in the diagnosis, prognostication, and


prediction of response in patients with cancer * Mathematical models can be used to predict drug responses under a given set of conditions or to predict what combinations of drug could


result in a given cell fate * Systems biology has been successful in predicting molecular responses in well-described cancer pathways (for example, mitogen activated protein kinase pathway)


or in physiology, but has not yet been applied to the cancer clinic Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS UNRAVELING NON-GENETIC HETEROGENEITY IN CANCER WITH DYNAMICAL MODELS AND


COMPUTATIONAL TOOLS Article 24 April 2023 SINGLE-CELL TRANSCRIPTOMICS IN CANCER: COMPUTATIONAL CHALLENGES AND OPPORTUNITIES Article Open access 15 September 2020 SYSTEMS BIOLOGY IN


CARDIOVASCULAR DISEASE: A MULTIOMICS APPROACH Article 18 December 2020 REFERENCES * Henney, A. & Superti-Furga, G. A network solution. _Nature_ 455, 730–731 (2008). Article  CAS  Google


Scholar  * Belardinelli, L., Shryock, J. C. & Fraser, H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor


ranolazine. _Heart_ 92 (Suppl. 4), iv6–iv14 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Noble, D. & Noble, P. J. Late sodium current in the pathophysiology of cardiovascular


disease: consequences of sodium-calcium overload. _Heart_ 92 (Suppl. 4), iv1–iv5 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Cho, C. R., Labow, M., Reinhardt, M., van Oostrum, J.


& Peitsch, M. C. The application of systems biology to drug discovery. _Curr. Opin. Chem. Biol._ 10, 294–302 (2006). Article  CAS  Google Scholar  * FDA Approves New Treatment for Chest


Pain, _FDA_ [online], (2009). * Berns, K. _ et al_. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. _Cancer Cell_


12, 395–402 (2007). Article  CAS  Google Scholar  * Valabrega, G., Montemurro, F. & Aglietta, M. Trastuzumab: mechanism of action, resistance and future perspectives in


HER2-overexpressing breast cancer. _Ann. Oncol._ 18, 977–984 (2007). Article  CAS  Google Scholar  * Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. _Cell_ 100, 57–70 (2000).


Article  CAS  Google Scholar  * Sobin, L. H. & Wittekind, C. H. _UICC: TNM Classification of Malignant Tumors_, 6th edn (Wiley-Liss, New York, 2002). Google Scholar  * Elston, C. W.


& Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up.


_Histopathology_ 19, 403–410 (1991). Article  CAS  Google Scholar  * Reis-Filho, J. S. _ et al_. Metaplastic breast carcinomas are basal-like tumours. _Histopathology_ 49, 10–21 (2006).


Article  CAS  Google Scholar  * Reis-Filho, J. S. & Tutt, A. N. Triple negative tumours: a critical review. _Histopathology_ 52, 108–118 (2008). Article  CAS  Google Scholar  *


Gusterson, B. Do 'basal-like' breast cancers really exist? _Nat. Rev. Cancer_ 9, 128–134 (2009). Article  CAS  Google Scholar  * Perou, C. M. _ et al_. Molecular portraits of human


breast tumours. _Nature_ 406, 747–752 (2000). Article  CAS  Google Scholar  * Tan, D. S. & Reis-Filho, J. S. Comparative genomic hybridisation arrays: high-throughput tools to determine


targeted therapy in breast cancer. _Pathobiology_ 75, 63–74 (2008). Article  CAS  Google Scholar  * Turner, N. C. & Reis-Filho, J. S. Basal-like breast cancer and the BRCA1 phenotype.


_Oncogene_ 25, 5846–5853 (2006). Article  CAS  Google Scholar  * Carey, L. A. _ et al_. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. _Clin. Cancer


Res._ 13, 2329–2334 (2007). Article  CAS  Google Scholar  * Rouzier, R. _ et al_. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. _Clin. Cancer Res._ 11,


5678–5685 (2005). Article  CAS  Google Scholar  * Faratian, D. & Bartlett, J. Predictive markers in breast cancer—the future. _Histopathology_ 52, 91–98 (2008). Article  CAS  Google


Scholar  * Wood, L. D. _ et al_. The genomic landscapes of human breast and colorectal cancers. _Science_ 318, 1108–1113 (2007). Article  CAS  Google Scholar  * Bild, A. H. _ et al_.


Oncogenic pathway signatures in human cancers as a guide to targeted therapies. _Nature_ 439, 353–357 (2006). Article  CAS  Google Scholar  * Early Breast Cancer Trialists'


Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. _Lancet_ 365,


1687–1717 (2005). * Smith, I. _ et al_. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. _Lancet_ 369, 29–36 (2007).


Article  CAS  Google Scholar  * Faratian, D. Moodie, S. L., Harrison D. J. & Goryanin, I. Dynamic computational modeling in the search for better breast cancer drug therapy.


_Pharmacogenomics_ 8, 1757–1761 (2007). Article  CAS  Google Scholar  * O'Reilly, K. E. _ et al_. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt.


_Cancer Res._ 66, 1500–1508 (2006). Article  CAS  Google Scholar  * Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? _Nat. Rev. Drug Discov._ 3, 711–715


(2004). Article  CAS  Google Scholar  * Sherr, C. J. Cancer cell cycles. _Science_ 274, 1672–1677 (1996). Article  CAS  Google Scholar  * Kholodenko, B. N. Cell-signalling dynamics in time


and space. _Nat. Rev. Mol. Cell Biol._ 7, 165–176 (2006). Article  CAS  Google Scholar  * Kholodenko, B. N. & Kolch, W. Giving space to cell signaling. _Cell_ 133, 566–567 (2008).


Article  CAS  Google Scholar  * Cohen, A. A. _ et al_. Dynamic proteomics of individual cancer cells in response to a drug. _Science_ 322, 1511–1516 (2008). Article  CAS  Google Scholar  *


Kitano, H. Biological robustness. _Nat. Rev. Genet._ 5, 826–837 (2004). Article  CAS  Google Scholar  * Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in


complex systems. _Phys. Rev. Lett._ 84, 2529–2532 (2000). Article  CAS  Google Scholar  * Sauro, H. M. & Bergmann, F. T. Standards and ontologies in computational systems biology.


_Essays Biochem._ 45, 211–222 (2008). Article  CAS  Google Scholar  * Hucka, M. _ et al_. The systems biology markup language (SBML): a medium for representation and exchange of biochemical


network models. _Bioinformatics_ 19, 524–531 (2003). Article  CAS  Google Scholar  * Fuss, H., Dubitzky, W., Downes, C. S. & Kurth, M. J. Mathematical models of cell cycle regulation.


_Brief. Bioinform._ 6, 163–177 (2005). Article  CAS  Google Scholar  * Hatakeyama, M. _ et al_. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt


pathways in heregulin-induced ErbB signalling. _Biochem. J._ 373, 451–463 (2003). Article  CAS  Google Scholar  * Hendriks, B. S. _ et al_. Computational modelling of ErbB family


phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. _Syst. Biol. (Stevenage)_ 153, 22–33


(2006). Article  CAS  Google Scholar  * Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. _J.


Biol. Chem._ 274, 30169–30181 (1999). Article  CAS  Google Scholar  * Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite


phosphorylation in protein kinase cascades. _J. Cell Biol._ 164, 353–359 (2004). Article  CAS  Google Scholar  * Shankaran, H., Wiley, H. S. & Resat, H. Modeling the effects of


HER/ErbB1–3 coexpression on receptor dimerization and biological response. _Biophys. J._ 90, 3993–4009 (2006). Article  CAS  Google Scholar  * Steuer, R. Computational approaches to the


topology, stability and dynamics of metabolic networks. _Phytochemistry_ 68, 2139–2151 (2007). Article  CAS  Google Scholar  * Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller,


G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. _Nat. Biotechnol._ 20, 370–375 (2002). Article  Google Scholar  *


Janes, K. A. _ et al_. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. _Science_ 310, 1646–1653 (2005). Article  CAS  Google Scholar  * Demin,


O. & Goryanin, I. _Kinetic Modelling in Systems Biology_. (Chapman and Hall/CRC, Boca Raton, FL, 2008). Book  Google Scholar  * Berns, K. _ et al_. A functional genetic approach


identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. _Cancer Cell_ 12, 395–402 (2007). Article  CAS  Google Scholar  * Nagata, Y. _ et al_. PTEN


activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. _Cancer Cell_ 6, 117–127 (2004). Article  CAS  Google Scholar  *


Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. _Nat. Rev. Genet._ 5, 101–113 (2004). Article  CAS  Google Scholar  * Clyde, R.


G., Bown, J. L., Hupp, T. R., Zhelev, N. & Crawford, J. W. The role of modelling in identifying drug targets for diseases of the cell cycle. _J. R. Soc. Interface_ 3, 617–627 (2006).


Article  CAS  Google Scholar  * Goldberg, D. _Genetic Algorithms in Search, Optimization, and Machine Learning_. (Addison-Wesley, Reading, MA, 1989). Google Scholar  * Noble, D. Systems


biology and the heart. _Biosystems_ 83, 75–80 (2006). Article  Google Scholar  * Brewer, D., Barenco, M., Callard, R., Hubank, M. & Stark, J. Fitting ordinary differential equations to


short time course data. _Philos. Transact. A Math. Phys. Eng. Sci._ 366, 519–544 (2008). Article  Google Scholar  * Sorribas, A. & Savageau, M. A. A comparison of variant theories of


intact biochemical systems. I. Enzyme–enzyme interactions and biochemical systems theory. _Math. Biosci._ 94, 161–193 (1989). Article  CAS  Google Scholar  * Cascante, M. _ et al_. Metabolic


control analysis in drug discovery and disease. _Nat. Biotechnol._ 20, 243–249 (2002). Article  CAS  Google Scholar  * Savageau, M. A. & Voit, E. O. Power-law approach to modeling


biological systems. 1. Theory. _J. Ferment. Technol._ 60, 221–228 (1982). CAS  Google Scholar  * Voit, E. O. Models-of-data and models-of-processes in the post-genomic era. _Math. Biosci._


180, 263–274 (2002). Article  Google Scholar  * Bosl, W. J. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. _BMC Syst. Biol._ 1, 13 (2007).


Article  Google Scholar  * Kirby, J., Heath, P. R., Shaw, P. J. & Hamdy, F. C. Gene expression assays. _Adv. Clin. Chem._ 44, 247–292 (2007). Article  CAS  Google Scholar  * Kennett, J.


Y., Watson, S. K., Saprunoff, H., Heryet, C. & Lam, W. L. Technical demonstration of whole genome array comparative genomic hybridization. _J. Vis. Exp._ 5, 870 (2008). Google Scholar  *


Edwards, R. A. Laser capture microdissection of mammalian tissue. _J. Vis. Exp._ 309 (2007). * Camp, R. L., Chung, G. G. & Rimm, D. L. Automated subcellular localization and


quantification of protein expression in tissue microarrays. _Nat. Med._ 8, 1323–1327 (2002). Article  CAS  Google Scholar  * Pan, S. _ et al_. Mass spectrometry based targeted protein


quantification: methods and applications. _J. Proteome Res._ 8, 787–797 (2008). Article  Google Scholar  * Tibes, R. _ et al_. Reverse phase protein array: validation of a novel proteomic


technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. _Mol. Cancer Ther._ 5, 2512–2521 (2006). Article  CAS  Google Scholar  * Kedrin, D. _ et al_.


Intravital imaging of metastatic behavior through a mammary imaging window. _Nat. Methods_ 5, 1019–1021 (2008). Article  CAS  Google Scholar  * Edward, M. Melanoma cell-derived factors


stimulate glycosaminoglycan synthesis by fibroblasts cultured as monolayers and within contracted collagen lattices. _Br. J. Dermatol._ 144, 465–470 (2001). Article  CAS  Google Scholar  *


Dixon, J. M. The scientific value of preoperative studies and how they can be used. _Breast Cancer Res. Treat._ 87 (Suppl. 1), S19–S26 (2004). Article  CAS  Google Scholar  * Dowsett, M. _


et al_. Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. _Clin. Cancer Res._ 12, 1024s–1030s (2006). Article  CAS  Google Scholar  *


Dowsett, M. _ et al_. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. _J. Natl Cancer Inst._ 99, 167–170 (2007). Article  CAS 


Google Scholar  * Alberts, D. S. _ et al_. Intraperitoneal therapy for stage III ovarian cancer: a therapy whose time has come! _J. Clin. Oncol._ 20, 3944–3946 (2002). Article  Google


Scholar  * Nagtegaal, I. D. _ et al_. Radiation induces different changes in expression profiles of normal rectal tissue compared with rectal carcinoma. _Virchows Arch._ 446, 127–135 (2005).


Article  CAS  Google Scholar  * Dolled-Filhart, M. _ et al_. Quantitative _in situ_ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor


outcome. _Cancer Res._ 66, 5487–5494 (2006). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work is supported by Breast Cancer Campaign and Breakthrough Breast


Cancer. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Division of Pathology and Breakthrough Research Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh,


UK Dana Faratian & David J. Harrison * SIMBIOS, University of Abertay, Dundee, UK Robert G. Clyde & John W. Crawford Authors * Dana Faratian View author publications You can also


search for this author inPubMed Google Scholar * Robert G. Clyde View author publications You can also search for this author inPubMed Google Scholar * John W. Crawford View author


publications You can also search for this author inPubMed Google Scholar * David J. Harrison View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHOR Correspondence to Dana Faratian. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Faratian, D., Clyde, R., Crawford, J. _et al._ Systems pathology—taking molecular pathology into a new dimension. _Nat Rev Clin Oncol_ 6,


455–464 (2009). https://doi.org/10.1038/nrclinonc.2009.102 Download citation * Published: 07 July 2009 * Issue Date: August 2009 * DOI: https://doi.org/10.1038/nrclinonc.2009.102 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative