Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases

Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases

Play all audios:

Loading...

KEY POINTS * For neurodegenerative diseases such as Huntington's disease, spinocerebellar muscular atrophy, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's


disease there is a lack of effective treatments that directly address the underlying biochemical aetiology of neuronal dysfunction and cell death. * Protein misfolding, cellular stress and


neuronal cell death are common features of neurodegenerative diseases. * A diverse set of chaperone proteins act in concert to fold misfolded proteins, disaggregate damaged proteins and


prevent programmed cell death. * Heat shock transcription factor 1 (HSF1) coordinately activates the expression of chaperone protein gene expression. * Genetic and pharmacological


experiments in cell culture, fruitfly and mouse models of neurodegenerative disease suggest that enhancing the cellular protein folding and anti-apoptotic machinery by elevating levels of


chaperone proteins could have potential therapeutic efficacy in neurodegenerative diseases. * Current small-molecule HSF1 activators have undesirable properties — including direct


proteotoxicity, inhibition of the central cellular chaperone heat shock protein 90 and other characteristics — that limit their development for clinical use. * As the master activator of


chaperone protein expression, HSF1 is an attractive pharmacological target for the development of optimized small-molecule activators for therapeutic intervention in neurodegenerative


diseases. ABSTRACT Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-based


neurodegeneration are associated with the accumulation of misfolded proteins, resulting in neuronal dysfunction and cell death. However, current treatments for these diseases predominantly


address disease symptoms, rather than the underlying protein misfolding and cell death, and are not able to halt or reverse the degenerative process. Studies in cell culture, fruitfly, worm


and mouse models of protein misfolding-based neurodegenerative diseases indicate that enhancing the protein-folding capacity of cells, via elevated expression of chaperone proteins, has


therapeutic potential. Here, we review advances in strategies to harness the power of the natural cellular protein-folding machinery through pharmacological activation of heat shock


transcription factor 1 — the master activator of chaperone protein gene expression — to treat neurodegenerative diseases. Access through your institution Buy or subscribe This is a preview


of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only


$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HEAT SHOCK PROTEIN


GRP78/BIP/HSPA5 BINDS DIRECTLY TO TDP-43 AND MITIGATES TOXICITY ASSOCIATED WITH DISEASE PATHOLOGY Article Open access 17 May 2022 TARGETING CHAPERONE-MEDIATED AUTOPHAGY IN NEURODEGENERATIVE


DISEASES: MECHANISMS AND THERAPEUTIC POTENTIAL Article 15 November 2024 O-GLCNAC MODIFICATION OF SMALL HEAT SHOCK PROTEINS ENHANCES THEIR ANTI-AMYLOID CHAPERONE ACTIVITY Article 15 March


2021 REFERENCES * Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. _Nature Med._ 10, S10–S17 (2004). Article  CAS  PubMed  Google Scholar  * Zhang, Q. C.


et al. A compact β model of huntingtin toxicity. _J. Biol. Chem._ 286, 8188–8196 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Haass, C. & Selkoe, D. J. Soluble protein


oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. _Nature Rev. Mol. Cell Biol._ 8, 101–112 (2007). Article  CAS  Google Scholar  * Muchowski, P. J.


Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? _Neuron_ 35, 9–12 (2002). Article  CAS  PubMed  Google Scholar  * Arrasate, M., Mitra,


S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. _Nature_ 431, 805–810 (2004). Article 


CAS  PubMed  Google Scholar  * Fiumara, F., Fioriti, L., Kandel, E. R. & Hendrickson, W. A. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and polyQ


proteins. _Cell_ 143, 1121–1135 (2010). THIS STUDY DEMONSTRATED THAT COILED-COIL MOTIFS IN POLYQ PROTEINS CONTRIBUTE TO THE AGGREGATION AND CYTOTOXICITY OF THESE PROTEINS. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. _Nature Rev. Neurosci._ 11, 791–797 (2010). Article 


CAS  Google Scholar  * Jankovic, J. Parkinson's disease: clinical features and diagnosis. _J. Neurol. Neurosurg. Psychiatr._ 79, 368–376 (2008). Article  CAS  Google Scholar  *


Buschert, V., Bokde, A. L. W. & Hampel, H. Cognitive intervention in Alzheimer disease. _Nature Rev. Neurol._ 6, 508–517 (2010). Article  CAS  Google Scholar  * Carter, M. D., Simms, G.


A. & Weaver, D. F. The development of new therapeutics for Alzheimer's disease. _Clin. Pharmacol. Ther._ 88, 475–486 (2010). Article  CAS  PubMed  Google Scholar  * Boillée, S.,


Vande Velde, C. & Cleveland, D. W. ALS: a disease of motor neurons and their nonneuronal neighbors. _Neuron_ 52, 39–59 (2006). Article  CAS  PubMed  Google Scholar  * Verity, N. C. &


Mallucci, G. R. Rescuing neurons in prion disease. _Biochem. J._ 433, 19–29 (2010). Article  CAS  Google Scholar  * Walker, F. O. Huntington's disease. _Lancet_ 369, 218–228 (2007).


Article  CAS  PubMed  Google Scholar  * Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. _Science_ 295, 1852–1858 (2002). Article


  CAS  PubMed  Google Scholar  * Chai, Y., Koppenhafer, S. L., Bonini, N. M. & Paulson, H. L. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine


disease. _J. Neurosci._ 19, 10338–10347 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in


_Drosophila_ by the molecular chaperone HSP70. _Nature Genet._ 23, 425–428 (1999). Article  CAS  PubMed  Google Scholar  * Chan, H. Y., Warrick, J. M., Gray-Board, G. L., Paulson, H. L.


& Bonini, N. M. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in _Drosophila_. _Hum. Mol. Genet._ 9, 2811–2820


(2000). THIS STUDY SHOWED THAT HSP40 AND HSP70 SYNERGIZE TO AMELIORATE THE CYTOTOXICITY OF POLYQ PROTEINS IN FRUITFLY DISEASE MODELS BY MODULATING THE SOLUBILITY OF THESE PROTEINS. Article 


CAS  PubMed  Google Scholar  * Auluck, P. K. & Bonini, N. M. Pharmacological prevention of Parkinson disease in _Drosophila_. _Nature Med._ 8, 1185–1186 (2002). THIS PAPER SHOWED THAT


PHARMACOLOGICAL ACTIVATION OF HSF1 VIA THE HSP90 INHIBITOR GELDANAMYCIN CAN AMELIORATE DISEASE PHENOTYPES IN A FRUITFLY MODEL OF PARKINSON'S DISEASE. Article  CAS  PubMed  Google


Scholar  * Auluck, P., Meulener, M. & Bonini, N. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in _Drosophila_. _J. Biol. Chem._ 280, 2873–2878 (2005). Article 


CAS  PubMed  Google Scholar  * Alavez, S., Vantipalli, M. C., Zucker, D. J., Klang, I. M. & Lithgow, G. J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend


lifespan. _Nature_ 472, 226–229 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early


molecular event in _Caenorhabditis elegans_ aging. _Proc. Natl Acad. Sci. USA_ 106, 14914–14919 (2009). THIS STUDY DESCRIBES A WIDESPREAD FAILURE IN PROTEIN FOLDING THAT OCCURS IN EARLY


ADULTHOOD AND COINCIDES WITH REDUCED ACTIVATION OF HSF1 AND CHAPERONE PROTEIN EXPRESSION IN _C. ELEGANS_. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fonte, V. et al. Interaction


of intracellular β amyloid peptide with chaperone proteins. _Proc. Natl Acad. Sci. USA_ 99, 9439–9444 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Satyal, S. H. et al.


Polyglutamine aggregates alter protein folding homeostasis in _Caenorhabditis elegans_. _Proc. Natl Acad. Sci. USA_ 97, 5750–5755 (2000). THIS STUDY SHOWS THAT THE EXPRESSION OF POLYQ


PROTEINS IN _C. ELEGANS_ DISRUPTS GENERAL PROTEIN FOLDING, CAUSES AGGREGATION OF OTHERWISE SOLUBLE PROTEINS AND CONSTITUTIVELY PROMOTES THE ACTIVATION OF HSF1 AND CHAPERONE PROTEINS. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Teixeira-Castro, A. et al. Neuron-specific proteotoxicity of mutant ataxin-3 in _C. elegans_: rescue by the DAF-16 and HSF-1 pathways. _Hum.


Mol. Genet._ 20, 2996–3009 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, J. et al. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation


and synaptic dysfunction when expressed in neurons of _Caenorhabditis elegans_. _PLoS Genet._ 5, e1000350 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lanneau, D., de


Thonel, A., Maurel, S., Didelot, C. & Garrido, C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. _Prion_ 1, 53–60 (2007). Article  PubMed 


PubMed Central  Google Scholar  * Batulan, Z. et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. _J. Neurosci._ 23,


5789–5798 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bonelli, M. A. et al. Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging _in


vitro_. _Exp. Cell Res._ 252, 20–32 (1999). Article  CAS  PubMed  Google Scholar  * Gutsmann-Conrad, A., Heydari, A. R., You, S. & Richardson, A. The expression of heat shock protein 70


decreases with cellular senescence _in vitro_ and in cells derived from young and old human subjects. _Exp. Cell Res._ 241, 404–413 (1998). Article  CAS  PubMed  Google Scholar  *


Gutsmann-Conrad, A., Pahlavani, M. A., Heydari, A. R. & Richardson, A. Expression of heat shock protein 70 decreases with age in hepatocytes and splenocytes from female rats. _Mech.


Ageing Dev._ 107, 255–270 (1999). Article  CAS  PubMed  Google Scholar  * Fargnoli, J., Kunisada, T., Fornace, A. J., Schneider, E. L. & Holbrook, N. J. Decreased expression of heat


shock protein 70 mRNA and protein after heat treatment in cells of aged rats. _Proc. Natl Acad. Sci. USA_ 87, 846–850 (1990). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fawcett,


T. W., Sylvester, S. L., Sarge, K. D., Morimoto, R. I. & Holbrook, N. J. Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. _J. Biol. Chem._


269, 32272–32278 (1994). CAS  PubMed  Google Scholar  * Pahlavani, M. A., Harris, M. D., Moore, S. A., Weindruch, R. & Richardson, A. The expression of heat shock protein 70 decreases


with age in lymphocytes from rats and rhesus monkeys. _Exp. Cell Res._ 218, 310–318 (1995). Article  CAS  PubMed  Google Scholar  * Bailey, C. K., Andriola, I. F. M., Kampinga, H. H. &


Merry, D. E. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. _Hum. Mol. Genet._ 11,


515–523 (2002). Article  CAS  PubMed  Google Scholar  * Fujimoto, M. et al. Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. _J. Biol.


Chem._ 280, 34908–34916 (2005). THIS STUDY DEMONSTRATES THAT THE EXPRESSION OF A CONSTITUTIVELY ACTIVE _HSF1_ ALLELE AMELIORATES PATHOGENIC PHENOTYPES IN A MOUSE MODEL OF HUNTINGTON'S


DISEASE. Article  CAS  PubMed  Google Scholar  * Muchowski, P. J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. _Proc. Natl


Acad. Sci. USA_ 97, 7841–7846 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40


attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. _Nature Struct. Mol. Biol._ 11, 1215–1222 (2004). Article  CAS  Google Scholar  * Wyttenbach, A.


et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. _Proc. Natl Acad. Sci. USA_


97, 2898–2903 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Feder, J. H., Rossi, J. M., Solomon, J., Solomon, N. & Lindquist, S. The consequences of expressing hsp70 in


_Drosophila_ cells at normal temperatures. _Genes Dev._ 6, 1402–1413 (1992). Article  CAS  PubMed  Google Scholar  * Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock


factor 1 is a powerful multifaceted modifier of carcinogenesis. _Cell_ 130, 1005–1018 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Akerfelt, M., Morimoto, R. I. &


Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. _Nature Rev. Mol. Cell Biol._ 11, 545–555 (2010). Article  CAS  Google Scholar  * Gonsalves, S. E.,


Moses, A. M., Razak, Z., Robert, F. & Westwood, J. T. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in


_Drosophila melanogaster_. _PLoS ONE_ 6, e15934 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hahn, J.-S., Hu, Z., Thiele, D. J. & Iyer, V. R. Genome-wide analysis of


the biology of stress responses through heat shock transcription factor. _Mol. Cell Biol._ 24, 5249–5256 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Trinklein, N. D.,


Murray, J. I., Hartman, S. J., Botstein, D. & Myers, R. M. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. _Mol. Biol.


Cell_ 15, 1254–1261 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ostling, P., Björk, J. K., Roos-Mattjus, P., Mezger, V. & Sistonen, L. Heat shock factor 2 (HSF2)


contributes to inducible expression of _hsp_ genes through interplay with HSF1. _J. Biol. Chem._ 282, 7077–7086 (2007). Article  CAS  PubMed  Google Scholar  * Sandqvist, A. et al.


Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. _Mol. Biol. Cell_ 20, 1340–1347 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Shinkawa, T. et al. Heat shock factor 2 is required for maintaining proteostasis against febrile range thermal stress and polyglutamine aggregation. _Mol. Biol.


Cell_ 22, 3571–3583 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Abravaya, K., Myers, M. P., Murphy, S. P. & Morimoto, R. I. The human heat shock protein hsp70


interacts with HSF, the transcription factor that regulates heat shock gene expression. _Genes Dev._ 6, 1153–1164 (1992). Article  CAS  PubMed  Google Scholar  * Ali, A., Bharadwaj, S.,


O'Carroll, R. & Ovsenek, N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. _Mol. Cell Biol._ 18, 4949–4960 (1998). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Bharadwaj, S., Ali, A. & Ovsenek, N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 _in vivo_. _Mol.


Cell Biol._ 19, 8033–8041 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conde, R., Xavier, J., McLoughlin, C., Chinkers, M. & Ovsenek, N. Protein phosphatase 5 is a


negative modulator of heat shock factor 1. _J. Biol. Chem._ 280, 28989–28996 (2005). Article  CAS  PubMed  Google Scholar  * Guo, Y. et al. Evidence for a mechanism of repression of heat


shock factor 1 transcriptional activity by a multichaperone complex. _J. Biol. Chem._ 276, 45791–45799 (2001). Article  CAS  PubMed  Google Scholar  * Shi, Y., Mosser, D. D. & Morimoto,


R. I. Molecular chaperones as HSF1-specific transcriptional repressors. _Genes Dev._ 12, 654–666 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zou, J., Guo, Y., Guettouche,


T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. _Cell_ 94, 471–480


(1998). Article  CAS  PubMed  Google Scholar  * Arlander, S. J. H. et al. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. _J. Biol. Chem._ 281, 2989–2998


(2006). Article  CAS  PubMed  Google Scholar  * Hernández, M. P., Chadli, A. & Toft, D. O. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor.


_J. Biol. Chem._ 277, 11873–11881 (2002). Article  CAS  PubMed  Google Scholar  * King, F. W., Wawrzynow, A., Höhfeld, J. & Zylicz, M. Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70


and Hsp90 interactions with wild-type or mutant p53. _EMBO J._ 20, 6297–6305 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carmichael, J., Sugars, K. L., Bao, Y. P. &


Rubinsztein, D. C. Glycogen synthase kinase-3β inhibitors prevent cellular polyglutamine toxicity caused by the Huntington's disease mutation. _J. Biol. Chem._ 277, 33791–33798 (2002).


Article  CAS  PubMed  Google Scholar  * Chu, B., Soncin, F., Price, B. D., Stevenson, M. A. & Calderwood, S. K. Sequential phosphorylation by mitogen-activated protein kinase and


glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. _J. Biol. Chem._ 271, 30847–30857 (1996). Article  CAS  PubMed  Google Scholar  * Chu, B., Zhong, R.,


Soncin, F., Stevenson, M. A. & Calderwood, S. K. Transcriptional activity of heat shock factor 1 at 37 °C is repressed through phosphorylation on two distinct serine residues by glycogen


synthase kinase 3 and protein kinases Cα and Cζ. _J. Biol. Chem._ 273, 18640–18646 (1998). Article  CAS  PubMed  Google Scholar  * Hietakangas, V. et al. Phosphorylation of serine 303 is a


prerequisite for the stress-inducible SUMO modification of heat shock factor 1. _Mol. Cell Biol._ 23, 2953–2968 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kline, M. P.


& Morimoto, R. I. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. _Mol. Cell Biol._ 17, 2107–2115 (1997). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Knauf, U., Newton, E. M., Kyriakis, J. & Kingston, R. E. Repression of human heat shock factor 1 activity at control temperature by


phosphorylation. _Genes Dev._ 10, 2782–2793 (1996). Article  CAS  PubMed  Google Scholar  * Murshid, A. et al. Protein kinase A binds and activates heat shock factor 1. _PLoS ONE_ 5, e13830


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, X. et al. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity


and promotes HSP90 binding. _J. Biol. Chem._ 281, 782–791 (2006). Article  CAS  PubMed  Google Scholar  * Pelham, H. R. A regulatory upstream promoter element in the _Drosophila_ Hsp 70


heat-shock gene. _Cell_ 30, 517–528 (1982). Article  CAS  PubMed  Google Scholar  * Pelham, H. R. & Bienz, M. A synthetic heat-shock promoter element confers heat-inducibility on the


herpes simplex virus thymidine kinase gene. _EMBO J._ 1, 1473–1477 (1982). Article  CAS  PubMed  PubMed Central  Google Scholar  * Perisic, O., Xiao, H. & Lis, J. T. Stable binding of


_Drosophila_ heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. _Cell_ 59, 797–806 (1989). Article  CAS  PubMed  Google Scholar  * Clos, J. et


al. Molecular cloning and expression of a hexameric _Drosophila_ heat shock factor subject to negative regulation. _Cell_ 63, 1085–1097 (1990). Article  CAS  PubMed  Google Scholar  *


Sorger, P. K. & Nelson, H. C. Trimerization of a yeast transcriptional activator via a coiled-coil motif. _Cell_ 59, 807–813 (1989). Article  CAS  PubMed  Google Scholar  * Ahn, S.-G.


& Thiele, D. J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. _Genes Dev._ 17, 516–528 (2003). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Neef, D. W., Turski, M. L. & Thiele, D. J. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in


neurodegenerative disease. _PLoS Biol._ 8, e1000291 (2010). IN THIS STUDY THE AUTHORS GENERATED A HUMANIZED HSF1-BASED YEAST SCREEN TO IDENTIFY HSF1A, A NOVEL PHARMACOLOGICAL ACTIVATOR OF


HSF1 THAT IS EFFICACIOUS IN AMELIORATING POLYQ PROTEIN-ASSOCIATED PROTEIN AGGREGATION AND CYTOTOXICITY IN CELL CULTURE AND FRUITFLY DISEASE MODELS. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Trott, A. et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. _Mol. Biol.


Cell_ 19, 1104–1112 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. & Wu, C. Regulation of heat shock factor


trimer formation: role of a conserved leucine zipper. _Science_ 259, 230–234 (1993). Article  CAS  PubMed  Google Scholar  * Guettouche, T., Boellmann, F., Lane, W. S. & Voellmy, R.


Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. _BMC Biochem._ 6, 4 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Holmberg, C. I.


et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. _EMBO J._ 20, 3800–3810 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Kim, S.-A., Yoon, J.-H., Lee, S.-H. & Ahn, S.-G. Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. _J.


Biol. Chem._ 280, 12653–12657 (2005). Article  CAS  PubMed  Google Scholar  * Westerheide, S. D., Anckar, J., Stevens, S. M., Sistonen, L. & Morimoto, R. I. Stress-inducible regulation


of heat shock factor 1 by the deacetylase SIRT1. _Science_ 323, 1063–1066 (2009). THIS STUDY DEMONSTRATED THAT THE DNA BINDING ACTIVITY OF HSF1 IS INHIBITED BY ACETYLATION WITHIN THE DNA


BINDING DOMAIN, AND HSF1 IS MAINTAINED IN A DEACETYLATED STATE VIA SIRT1. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, J., Bridges, K., Chen, K. Y. & Liu, A. Y.-C.


Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. _PLoS ONE_ 3, e2864 (2008). THIS WORK REPORTED THAT RILUZOLE, WHICH IS A TREATMENT FOR


ALS, PROMOTES AN INCREASE IN STEADY-STATE HSF1 LEVELS POTENTIALLY VIA THE INHIBITION OF CHAPERONE-MEDIATED AUTOPHAGY. Article  CAS  PubMed  PubMed Central  Google Scholar  * Trepel, J.,


Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. _Nature Rev. Cancer_ 10, 537–549 (2010). Article  CAS  Google Scholar  * Dickey, C. A. et al. HSP


induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. _FASEB J._ 20, 753–755 (2006). Article  CAS  PubMed  Google Scholar


  * Dickey, C. A. et al. Development of a high throughput drug screening assay for the detection of changes in tau levels — proof of concept with HSP90 inhibitors. _Curr. Alzheimer Res._ 2,


231–238 (2005). Article  CAS  PubMed  Google Scholar  * Dou, F. et al. Chaperones increase association of tau protein with microtubules. _Proc. Natl Acad. Sci. USA_ 100, 721–726 (2003).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Petrucelli, L. et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. _Hum. Mol. Genet._ 13, 703–714 (2004).


Article  CAS  PubMed  Google Scholar  * Flower, T. R., Chesnokova, L. S., Froelich, C. A., Dixon, C. & Witt, S. N. Heat shock prevents α-synuclein-induced apoptosis in a yeast model of


Parkinson's disease. _J. Mol. Biol._ 351, 1081–1100 (2005). Article  CAS  PubMed  Google Scholar  * Shen, H.-Y., He, J.-C., Wang, Y., Huang, Q.-Y. & Chen, J.-F. Geldanamycin induces


heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. _J. Biol. Chem._ 280, 39962–39969 (2005). Article  CAS  PubMed  Google Scholar  * Agrawal, N. et


al. Identification of combinatorial drug regimens for treatment of Huntington's disease using _Drosophila_. _Proc. Natl Acad. Sci. USA_ 102, 3777–3781 (2005). THIS STUDY DEMONSTRATED


THAT THE HSP90 INHIBITOR GELDANAMYCIN AND THE HISTONE DEACETYLASE INHIBITOR SUBEROYLANILIDE HYDROXAMIC ACID HAVE COMBINATORIAL EFFICACY IN AMELIORATING CYTOTOXICITY IN A FRUITFLY MODEL OF


NEURODEGENERATIVE DISEASE. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fujikake, N. et al. Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced


neurodegeneration through induction of multiple molecular chaperones. _J. Biol. Chem._ 283, 26188–26197 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hay, D. G. et al.


Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. _Hum. Mol. Genet._ 13, 1389–1405


(2004). Article  CAS  PubMed  Google Scholar  * Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of


Huntington's disease. _Hum. Mol. Genet._ 10, 1307–1315 (2001). Article  CAS  PubMed  Google Scholar  * Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M. & Neckers, L. M. The heat


shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. _J. Biol. Chem._ 275, 37181–37186 (2000).


Article  CAS  PubMed  Google Scholar  * Yu, X. M. et al. Hsp90 inhibitors identified from a library of novobiocin analogues. _J. Am. Chem. Soc._ 127, 12778–12779 (2005). Article  CAS  PubMed


  Google Scholar  * Ansar, S. et al. A non-toxic Hsp90 inhibitor protects neurons from Aβ-induced toxicity. _Bioorg. Med. Chem. Lett._ 17, 1984–1990 (2007). Article  CAS  PubMed  Google


Scholar  * Kimura, H. et al. ITZ-1, a client-selective Hsp90 inhibitor, efficiently induces heat shock factor 1 activation. _Chem. Biol._ 17, 18–27 (2010). Article  CAS  PubMed  Google


Scholar  * Salehi, A. H. et al. AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. _Chem. Biol._ 13,


213–223 (2006). Article  CAS  PubMed  Google Scholar  * Schnaider, T., Somogyi, J., Csermely, P. & Szamel, M. The Hsp90-specific inhibitor, geldanamycin, blocks CD28-mediated activation


of human T lymphocytes. _Life Sci._ 63, 949–954 (1998). Article  CAS  PubMed  Google Scholar  * Westerheide, S. et al. Celastrols as inducers of the heat shock response and cytoprotection.


_J. Biol. Chem._ 279, 56053–56060 (2004). Article  CAS  PubMed  Google Scholar  * Hieronymus, H. et al. Gene expression signature-based chemical genomic prediction identifies a novel class


of HSP90 pathway modulators. _Cancer Cell_ 10, 321–330 (2006). Article  CAS  PubMed  Google Scholar  * Zhang, T. et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against


pancreatic cancer cells. _Mol. Cancer Ther._ 7, 162–170 (2008). Article  CAS  PubMed  Google Scholar  * Yang, H., Chen, D., Cui, Q. C., Yuan, X. & Dou, Q. P. Celastrol, a triterpene


extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. _Cancer Res._ 66, 4758–4765 (2006). Article  CAS


  PubMed  Google Scholar  * Kiaei, M. et al. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. _Neurodegener. Dis._ 2, 246–254


(2005). Article  CAS  PubMed  Google Scholar  * Allison, A. C., Cacabelos, R., Lombardi, V. R., Alvarez, X. A. & Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as


a possible treatment for Alzheimer's disease. _Prog. Neuropsychopharmacol. Biol. Psychiatry_ 25, 1341–1357 (2001). Article  CAS  PubMed  Google Scholar  * Wang, J., Gines, S.,


MacDonald, M. E. & Gusella, J. F. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. _BMC Neurosci._ 6, 1


(2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y.-Q. & Sarge, K. D. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock


response. _J. Mol. Med._ 85, 1421–1428 (2007). Article  CAS  PubMed  Google Scholar  * Cleren, C., Calingasan, N. Y., Chen, J. & Beal, M. F. Celastrol protects against MPTP- and


3-nitropropionic acid-induced neurotoxicity. _J. Neurochem._ 94, 995–1004 (2005). Article  CAS  PubMed  Google Scholar  * Faust, K. et al. Neuroprotective effects of compounds with


antioxidant and anti-inflammatory properties in a _Drosophila_ model of Parkinson's disease. _BMC Neurosci._ 10, 109 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Hansen, J. & Bross, P. A cellular viability assay to monitor drug toxicity. _Methods Mol. Biol._ 648, 303–311 (2010). Article  CAS  PubMed  Google Scholar  * Kalmar, B. & Greensmith,


L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration — evidence for neuroprotective and neurotoxic effects. _Cell. Mol. Biol. Lett._ 14,


319–335 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, S., Liu, K., Wang, X., He, Q. & Chen, X. Toxic effects of celastrol on embryonic development of zebrafish


(_Danio rerio_). _Drug Chem. Toxicol._ 34, 61–65 (2011). Article  CAS  PubMed  Google Scholar  * Ohtsuka, K., Kawashima, D., Gu, Y. & Saito, K. Inducers and co-inducers of molecular


chaperones. _Int. J. Hyperthermia_ 21, 703–711 (2005). Article  CAS  PubMed  Google Scholar  * Hirakawa, T., Rokutan, K., Nikawa, T. & Kishi, K. Geranylgeranylacetone induces heat shock


proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. _Gastroenterology_ 111, 345–357 (1996). Article  CAS  PubMed  Google Scholar  * Katsuno, M. et al.


Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. _Proc. Natl Acad. Sci. USA_ 102, 16801–16806 (2005). THIS WORK DEMONSTRATED THAT


PHARMACOLOGICAL ACTIVATION OF HSF1 VIA GERANYLGERANYLACETONE PROMOTES THE ACTIVATION OF CHAPERONE PROTEIN EXPRESSION AND AMELIORATES CYTOTOXICITY IN A MOUSE MODEL OF SPINAL AND BULBAR


MUSCULAR ATROPHY. Article  CAS  PubMed  PubMed Central  Google Scholar  * Otaka, M. et al. The induction mechanism of the molecular chaperone HSP70 in the gastric mucosa by


geranylgeranylacetone (HSP-inducer). _Biochem. Biophys. Res. Commun._ 353, 399–404 (2007). Article  CAS  PubMed  Google Scholar  * Patury, S., Miyata, Y. & Gestwicki, J. E.


Pharmacological targeting of the Hsp70 chaperone. _Curr. Top. Med. Chem._ 9, 1337–1351 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hirota, K. et al. Geranylgeranylacetone


enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. _Biochem. Biophys. Res. Commun._ 275, 825–830 (2000). Article  CAS  PubMed  Google


Scholar  * Okada, S. et al. Geranylgeranylacetone induces apoptosis in HL-60 cells. _Cell Struct. Funct._ 24, 161–168 (1999). Article  CAS  PubMed  Google Scholar  * Endo, S. et al.


Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. _Mol. Pharmacol._ 72,


1337–1348 (2007). Article  CAS  PubMed  Google Scholar  * Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through


subunit-specific interactions. _Nature Cell Biol._ 8, 1155–1162 (2006). THIS STUDY SHOWS THAT THE TRIC CYTOSOLIC CHAPERONE COMPLEX BINDS TO THE PATHOGENIC HUNTINGTIN PROTEIN AND REDUCES


HUNTINGTIN-MEDIATED CYTOTOXICITY. Article  CAS  PubMed  Google Scholar  * Tam, S. et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to


aggregation. _Nature Struct. Mol. Biol._ 16, 1279–1285 (2009). Article  CAS  Google Scholar  * Hargitai, J. et al. Bimoclomol, a heat shock protein co-inducer, acts by the prolonged


activation of heat shock factor-1. _Biochem. Biophys. Res. Commun._ 307, 689–695 (2003). Article  CAS  PubMed  Google Scholar  * Vígh, L. et al. Bimoclomol: a nontoxic, hydroxylamine


derivative with stress protein-inducing activity and cytoprotective effects. _Nature Med._ 3, 1150–1154 (1997). Article  PubMed  Google Scholar  * Török, Z. et al. Heat shock protein


coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. _Proc. Natl Acad. Sci. USA_ 100, 3131–3136 (2003). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Nánási, P. P. & Jednákovits, A. Multilateral _in vivo_ and _in vitro_ protective effects of the novel heat shock protein coinducer, bimoclomol: results of preclinical


studies. _Cardiovasc. Drug Rev._ 19, 133–151 (2001). Article  PubMed  Google Scholar  * Kalmar, B. et al. Late stage treatment with arimoclomol delays disease progression and prevents


protein aggregation in the SOD1G93A mouse model of ALS. _J. Neurochem._ 107, 339–350 (2008). Article  CAS  PubMed  Google Scholar  * Kieran, D. et al. Treatment with arimoclomol, a coinducer


of heat shock proteins, delays disease progression in ALS mice. _Nature Med._ 10, 402–405 (2004). THIS STUDY DEMONSTRATES THAT PHARMACOLOGICAL ACTIVATION OF HSF1 VIA ARIMOCLOMOL AMELIORATES


PATHOGENIC PHENOTYPES AND EXTENDS LIFESPAN IN A MOUSE MODEL OF ALS. Article  CAS  PubMed  Google Scholar  * Lanka, V., Wieland, S., Barber, J. & Cudkowicz, M. Arimoclomol: a potential


therapy under development for ALS. _Expert Opin. Investig. Drugs_ 18, 1907–1918 (2009). Article  CAS  PubMed  Google Scholar  * Liu, A. Y. C. et al. Neuroprotective drug riluzole amplifies


the heat shock factor 1 (HSF1)- and glutamate transporter 1 (GLT1)-dependent cytoprotective mechanisms for neuronal survival. _J. Biol. Chem._ 286, 2785–2794 (2011). Article  CAS  PubMed 


Google Scholar  * Jurivich, D. A., Sistonen, L., Kroes, R. A. & Morimoto, R. I. Effect of sodium salicylate on the human heat shock response. _Science_ 255, 1243–1245 (1992). Article 


CAS  PubMed  Google Scholar  * Lee, B. S., Chen, J., Angelidis, C., Jurivich, D. A. & Morimoto, R. I. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results


in protection against stress-induced cellular damage. _Proc. Natl Acad. Sci. USA_ 92, 7207–7211 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Winegarden, N. A., Wong, K.


S., Sopta, M. & Westwood, J. T. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene


transcription in _Drosophila_. _J. Biol. Chem._ 271, 26971–26980 (1996). Article  CAS  PubMed  Google Scholar  * Housby, J. N. et al. Non-steroidal anti-inflammatory drugs inhibit the


expression of cytokines and induce HSP70 in human monocytes. _Cytokine_ 11, 347–358 (1999). Article  CAS  PubMed  Google Scholar  * Palayoor, S. T., Youmell, M. Y., Calderwood, S. K.,


Coleman, C. N. & Price, B. D. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. _Oncogene_ 18, 7389–7394 (1999). Article  CAS  PubMed


  Google Scholar  * Stevenson, M. A., Zhao, M. J., Asea, A., Coleman, C. N. & Calderwood, S. K. Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent


transcription of cyclic AMP response element binding protein- and NF-κ B-responsive genes. _J. Immunol._ 163, 5608–5616 (1999). CAS  PubMed  Google Scholar  * Ishihara, K., Yamagishi, N.


& Hatayama, T. Suppression of heat- and polyglutamine-induced cytotoxicity by nonsteroidal anti-inflammatory drugs. _Eur. J. Biochem._ 271, 4552–4558 (2004). Article  CAS  PubMed  Google


Scholar  * Ianaro, A. et al. Anti-inflammatory activity of 15-deoxy-δ12,14-PGJ2 and 2-cyclopenten-1-one: role of the heat shock response. _Mol. Pharmacol._ 64, 85–93 (2003). Article  CAS 


PubMed  Google Scholar  * Rossi, A., Elia, G. & Santoro, M. G. 2-cyclopenten-1-one, a new inducer of heat shock protein 70 with antiviral activity. _J. Biol. Chem._ 271, 32192–32196


(1996). Article  CAS  PubMed  Google Scholar  * Zhou, Y. et al. Chloro-oxime derivatives as novel small molecule chaperone amplifiers. _Bioorg. Med. Chem. Lett._ 19, 3128–3135 (2009).


Article  CAS  PubMed  Google Scholar  * Zhou, Y. et al. Pyrimido[5,4-e][1,2,4]triazine-5,7(1_H_,6_H_)-dione derivatives as novel small molecule chaperone amplifiers. _Bioorg. Med. Chem.


Lett._ 19, 4303–4307 (2009). Article  CAS  PubMed  Google Scholar  * Zhang, B. et al. Identification of small-molecule HSF1 amplifiers by high content screening in protection of cells from


stress induced injury. _Biochem. Biophys. Res. Commun._ 390, 925–930 (2009). Article  CAS  PubMed  Google Scholar  * Hayashida, N. et al. Heat shock factor 1 ameliorates proteotoxicity in


cooperation with the transcription factor NFAT. _EMBO J._ 29, 3459–3469 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Batista-Nascimento, L., Neef, D. W., Liu, P. C. C.,


Rodrigues-Pousada, C. & Thiele, D. J. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. _PLoS ONE_ 6, e15976 (2011). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Rimoldi, M., Servadio, A. & Zimarino, V. Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. _Brain Res.


Bull._ 56, 353–362 (2001). THIS STUDY SHOWS THAT CONSTITUTIVELY ACTIVE HSF1, VIA LOSS OF REPRESSIVE PHOSPHORYLATION EVENTS, PREVENTS PROTEIN AGGREGATION IN CELL CULTURE MODELS OF


POLYGLUTAMINE DISEASE. Article  CAS  PubMed  Google Scholar  * Banerjee Mustafi, S., Chakraborty, P. K. & Raha, S. Modulation of Akt and ERK1/2 pathways by resveratrol in chronic


myelogenous leukemia (CML) cells results in the downregulation of Hsp70. _PLoS ONE_ 5, e8719 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khaleque, M. A. et al. Induction


of heat shock proteins by heregulin β1 leads to protection from apoptosis and anchorage-independent growth. _Oncogene_ 24, 6564–6573 (2005). Article  CAS  PubMed  Google Scholar  * Xavier,


I. et al. Glycogen synthase kinase 3β negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. _J. Biol. Chem._ 275, 29147–29152 (2000). Article  CAS 


PubMed  Google Scholar  * Anckar, J. et al. Inhibition of DNA binding by differential sumoylation of heat shock factors. _Mol. Cell Biol._ 26, 955–964 (2006). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between


ubiquitin-conjugating enzyme Ubc9 and RanGAP1. _Cell_ 108, 345–356 (2002). Article  CAS  PubMed  Google Scholar  * Brunet Simioni, M. et al. Heat shock protein 27 is involved in SUMO-2/3


modification of heat shock factor 1 and thereby modulates the transcription factor activity. _Oncogene_ 28, 3332–3344 (2009). Article  CAS  PubMed  Google Scholar  * Fukuda, I. et al.


Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. _Chem. Biol._ 16, 133–140 (2009). Article  CAS  PubMed  Google Scholar  * Parker, J. A. et al.


Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. _Nature Genet._ 37, 349–350 (2005). THIS STUDY SHOWS THAT ACTIVATION OF SIR-2 (THE _C. ELEGANS_


HOMOLOG OF SIRT1) VIA RESVERATROL RESCUES NEURONAL DYSFUNCTION IN _C. ELEGANS_ AND MOUSE MODELS OF POLYQ DISEASE. Article  CAS  PubMed  Google Scholar  * Kim, D. et al. SIRT1 deacetylase


protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. _EMBO J._ 26, 3169–3179 (2007). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Ladiwala, A. R. A. et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. _J. Biol. Chem._ 285, 24228–24237 (2010).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Marambaud, P., Zhao, H. & Davies, P. Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides. _J. Biol.


Chem._ 280, 37377–37382 (2005). Article  CAS  PubMed  Google Scholar  * Lu, K.-T. et al. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical


scavenging. _J. Agric. Food Chem._ 56, 6910–6913 (2008). Article  CAS  PubMed  Google Scholar  * Zhang, F. et al. Resveratrol protects dopamine neurons against lipopolysaccharide-induced


neurotoxicity through its anti-inflammatory actions. _Mol. Pharmacol._ 78, 466–477 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Salamanca, H. H., Fuda, N., Shi, H. &


Lis, J. T. An RNA aptamer perturbs heat shock transcription factor activity in _Drosophila melanogaster_. _Nucleic Acids Res._ 39, 6729–6740 (2011). THIS WORK DESCRIBES AN RNA APTAMER THAT


INTERACTS WITH THE DNA BINDING DOMAIN OF HSF1 AND INHIBITS ITS BINDING TO PROMOTER HEAT SHOCK ELEMENTS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, P. C. & Thiele, D. J.


Modulation of human heat shock factor trimerization by the linker domain. _J. Biol. Chem._ 274, 17219–17225 (1999). Article  CAS  PubMed  Google Scholar  * Finkbeiner, S. Bridging the


Valley of Death of therapeutics for neurodegeneration. _Nature Med._ 16, 1227–1232 (2010). Article  CAS  PubMed  Google Scholar  * Aguzzi, A. & O'Connor, T. Protein aggregation


diseases: pathogenicity and therapeutic perspectives. _Nature Rev. Drug Discov._ 9, 237–248 (2010). Article  CAS  Google Scholar  * Hampel, H. et al. Biomarkers for Alzheimer's disease:


academic, industry and regulatory perspectives. _Nature Rev. Drug Discov._ 9, 560–574 (2010). Article  CAS  Google Scholar  * Schapira, A. H. V. Challenges to the development of


disease-modifying therapies in Parkinson's disease. _Eur. J. Neurol._ 18 (Suppl. 1), 16–21 (2011). Article  PubMed  Google Scholar  * Murray, A. N., Solomon, J. P., Wang, Y. J., Balch,


W. E. & Kelly, J. W. Discovery and characterization of a mammalian amyloid disaggregation activity. _Protein Sci._ 19, 836–846 (2010). THIS WORK DESCRIBES THE DISCOVERY OF A MAMMALIAN


DISAGGREGASE WITH THE ABILITY TO DISAGGREGATE Β-AMYLOID AGGREGATES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Opar, A. Hope builds for earlier detection of Alzheimer's


disease. _Nature Rev. Drug Discov._ 9, 579–581 (2010). Article  CAS  Google Scholar  * Nielsen, P. A., Andersson, O., Hansen, S. H., Simonsen, K. B. & Andersson, G. Models for predicting


blood–brain barrier permeation. _Drug Discov. Today_ 16, 472–475 (2011). Article  CAS  PubMed  Google Scholar  * Pardridge, W. M. Alzheimer's disease drug development and the problem


of the blood-brain barrier. _Alzheimers Dement._ 5, 427–432 (2009). Article  PubMed  PubMed Central  Google Scholar  * Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J.


Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. _Adv. Drug Deliv. Rev._ 46, 3–26 (2001). Article  CAS  PubMed 


Google Scholar  * Cudkowicz, M. E. et al. Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. _Muscle Nerve_ 38, 837–844 (2008). Article  CAS


  PubMed  Google Scholar  * Milane, A. et al. Brain and plasma riluzole pharmacokinetics: effect of minocycline combination. _J. Pharm. Pharm. Sci._ 12, 209–217 (2009). Article  CAS  PubMed


  Google Scholar  * Kumar, S. et al. Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. _EMBO


J._ 30, 2255–2265 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Williams, T. L. & Serpell, L. C. Membrane and surface interactions of the Alzheimer's Aβ peptide:


insights into the mechanism of cytotoxicity. _FEBS J._ 278, 3905–3917 (2011). Article  CAS  PubMed  Google Scholar  * Cohen, F. E. & Kelly, J. W. Therapeutic approaches to


protein-misfolding diseases. _Nature_ 426, 905–909 (2003). Article  CAS  PubMed  Google Scholar  * Labbadia, J. et al. Altered chromatin architecture underlies progressive impairment of the


heat shock response in mouse models of Huntington disease. _J. Clin. Invest._ 121, 3306–3319 (2011). THIS STUDY DEMONSTRATES THAT ACTIVATION OF HSF1-DEPENDENT CHAPERONE PROTEIN EXPRESSION


VIA AN HSP90 INHIBITOR TRANSIENTLY AMELIORATES DISEASE PHENOTYPES IN A MOUSE MODEL OF POLYQ-BASED DISEASE AS A RESULT OF DECREASED PROMOTER ACETYLATION. Article  CAS  PubMed  PubMed Central


  Google Scholar  * Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. _Science_ 319, 916–919 (2008). Article  CAS  PubMed  Google


Scholar  * Biamonte, M. A. et al. Heat shock protein 90: inhibitors in clinical trials. _J. Med. Chem._ 53, 3–17 (2010). Article  CAS  PubMed  Google Scholar  * Lancet, J. E. et al. Phase I


study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. _Leukemia_ 24, 699–705 (2010).


Article  CAS  PubMed  Google Scholar  * Nowakowski, G. S. et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. _Clin. Cancer Res._


12, 6087–6093 (2006). Article  CAS  PubMed  Google Scholar  * Brandt, G. E. L., Schmidt, M. D., Prisinzano, T. E. & Blagg, B. S. J. Gedunin, a novel Hsp90 inhibitor: semisynthesis of


derivatives and preliminary structure–activity relationships. _J. Med. Chem._ 51, 6495–6502 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kikuchi, T. et al. Cytotoxic and


apoptosis-inducing activities of limonoids from the seeds of _Azadirachta indica_ (neem). _J. Nat. Prod._ 74, 866–870 (2011). Article  CAS  PubMed  Google Scholar  * Traynor, B. J. et al.


Neuroprotective agents for clinical trials in ALS: a systematic assessment. _Neurology_ 67, 20–27 (2006). Article  CAS  PubMed  Google Scholar  * Bensimon, G. et al. Riluzole treatment,


survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. _Brain_ 132, 156–171 (2009). Article  PubMed  Google Scholar  * Nanke, Y. et al. Geranylgeranylacetone, a


non-toxic inducer of heat shock protein, induces cell death in fibroblast-like synoviocytes from patients with rheumatoid arthritis. _Mod. Rheumatol._ 19, 379–383 (2009). Article  CAS 


PubMed  Google Scholar  * Nishida, T. et al. Geranylgeranylacetone protects against acetaminophen-induced hepatotoxicity by inducing heat shock protein 70. _Toxicology_ 219, 187–196 (2006).


Article  CAS  PubMed  Google Scholar  * Shirakabe, H. et al. Clinical evaluation of teprenone, a mucosal protective agent, in the treatment of patients with gastric ulcers: a nationwide,


multicenter clinical study. _Clin. Ther._ 17, 924–935 (1995). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank T. Nevitt for her critical comments on the


manuscript. This work was supported in part by the US National Institutes of Health (NIH) National Research Service Award Postdoctoral Fellowship GM076954 (to D.W.N.) and the NIH grant


R01-GM059911 (to D.J.T.). A.M.J. is a trainee of the Duke University Pharmacological Sciences Training Program. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pharmacology and


Cancer Biology, Duke University School of Medicine, Durham, 27710, North Carolina, USA Daniel W. Neef, Alex M. Jaeger & Dennis J. Thiele Authors * Daniel W. Neef View author publications


You can also search for this author inPubMed Google Scholar * Alex M. Jaeger View author publications You can also search for this author inPubMed Google Scholar * Dennis J. Thiele View


author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Dennis J. Thiele. ETHICS DECLARATIONS COMPETING INTERESTS Dennis J.


Thiele and Daniel W. Neef are inventors on patent applications describing small-molecule activators of human heat shock transcription factor 1. Dennis J. Thiele is a co-founder and a


shareholder of Chaperone Therapeutic, Inc. RELATED LINKS RELATED LINKS FURTHER INFORMATION Dennis J. Thiele's homepage ClinicalTrials.gov website GLOSSARY * Dyskinesia A condition in


which voluntary movement is lost and an increase in chorea-like involuntary movement is observed. * Leucine zipper A structural motif that stabilizes inter- or intramolecular protein–protein


interactions via hydrophobic and charged interactions across coiled-coils and is commonly found in oligomerization domains. * Sumoylation A post-translational modification that is indicated


by the addition of a small ubiquitin-like modifier (SUMO) moiety that can affect protein stability, localization and activity. * Residence time The duration of time that heat shock


transcription factor 1 is bound to heat shock elements in the promoter region of target genes such as those encoding chaperone proteins. * Chaperone-mediated autophagy A process by which


cytosolic proteins are selectively degraded through interaction with heat shock cognate protein 70, which facilitates direct translocation into lysosomes for proteolysis. * Unfolded protein


response A conserved physiological response involving endoplasmic reticulum (ER)-initiated signal-transduction events, induced by accumulation of unfolded proteins in the lumen of the ER. *


SOD1G93A mice Transgenic mice expressing the G93A mutant form of human superoxide dismutase 1 (SOD1) that causes familial amyotrophic lateral sclerosis (ALS), which are commonly used as a


model for ALS. * RNA aptamer A specifically designed oligonucleotide with a secondary structure that elicits high affinity for a desired target. * p53R172H mouse model A mouse model


expressing a mutated form of the tumour suppressor protein p53, R172H, which results in increased oncogenesis. * R6/2 mouse model A widely used transgenic mouse model — expressing exon 1 of


the human huntingtin gene containing 150 CAG repeats — that rapidly develops Huntington's disease-like symptoms. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Neef, D., Jaeger, A. & Thiele, D. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. _Nat Rev Drug Discov_ 10, 930–944 (2011).


https://doi.org/10.1038/nrd3453 Download citation * Published: 01 December 2011 * Issue Date: December 2011 * DOI: https://doi.org/10.1038/nrd3453 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative