New methods to diagnose and treat cartilage degeneration

New methods to diagnose and treat cartilage degeneration

Play all audios:

Loading...

ABSTRACT Lesions in articular cartilage can result in significant musculoskeletal morbidity and display unique biomechanical characteristics that make repair difficult, at best. Several


surgical procedures have been devised in an attempt to relieve pain, restore function, and delay or stop the progression of cartilaginous lesions. Advanced MRI and ultrasonography protocols


are currently used in the evaluation of tissue repair and to improve diagnostic capability. Other nonoperative modalities, such as injection of intra-articular hyaluronic acid or


supplementary oral glucosamine and chondroitin sulfate, have shown potential efficacy as anti-inflammatory and symptom-modifying agents. The emerging field of tissue engineering, involving


the use of a biocompatible, structurally and mechanically stable scaffold, has shown promising early results in cartilage tissue repair. Scaffolds incorporating specific cell sources and


bioactive molecules have been the focus in this new exciting field. Further work is required to better understand the behavior of chondrocytes and the variables that influence their ability


to heal articular lesions. The future of cartilage repair will probably involve a combination of treatments in an attempt to achieve a regenerative tissue that is both biomechanically stable


and, ideally, identical to the surrounding native tissues. KEY POINTS * Cartilage injuries remain a major cause of morbidity in both young and elderly patient populations * Advanced imaging


with MRI and ultrasonography has resulted in improved sensitivity and specificity in the diagnosis of cartilage injuries * Surgical procedures have had some success in alleviating symptoms


and improving function; however, the regenerative tissue has not been found to resemble the surrounding native tissue * Intra-articular injections of hyaluronic acid, oral glucosamine and


oral chondroitin sulfate seem to confer a therapeutic effect via anti-inflammatory-mediated mechanisms * Tissue engineering involving scaffolds, bioactive molecules and specific cell lines


has shown promising results in the treatment of cartilage defects Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ALTERATIONS IN CARTILAGE QUANTIFICATION BEFORE AND AFTER INJECTIONS OF


MESENCHYMAL STEM CELLS INTO OSTEOARTHRITIC KNEES Article Open access 05 July 2021 IN MAJOR JOINT DISEASES THE HUMAN SYNOVIUM RETAINS ITS POTENTIAL TO FORM REPAIR CARTILAGE Article Open


access 26 June 2023 FAILURE OF CARTILAGE REGENERATION: EMERGING HYPOTHESES AND RELATED THERAPEUTIC STRATEGIES Article 09 June 2023 REFERENCES * Evans, P. J., Miniaci, A. & Hurtig, M. B.


Manual punch versus power harvesting of osteochondral grafts. _Arthroscopy_ 20, 306–310 (2004). Article  Google Scholar  * Mithoefer, K. _ et al_. The microfracture technique for the


treatment of articular cartilage lesions in the knee. A prospective cohort study. _J. Bone Joint Surg. Am._ 87, 1911–1920 (2005). Article  Google Scholar  * Hangody, L., Feczko, P., Bartha,


L., Bodo, G. & Kish, G. Mosaicplasty for the treatment of articular defects of the knee and ankle. _Clin. Orthop. Relat. Res._ 391 (Suppl.), S328–S336 (2001). Article  Google Scholar  *


Brittberg, M. _ et al_. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. _N. Engl. J. Med._ 331, 889–895 (1994). Article  CAS  Google Scholar  *


Knutsen, G. _ et al_. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. _J. Bone Joint Surg. Am._ 89, 2105–2112 (2007). PubMed 


Google Scholar  * Bentley, G. _ et al_. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. _J. Bone Joint


Surg. Br._ 85, 223–230 (2003). Article  CAS  Google Scholar  * Saris, D. B. _ et al_. Characterized chondrocyte implantation results in better structural repair when treating symptomatic


cartilage defects of the knee in a randomized controlled trial versus microfracture. _Am. J. Sports Med._ 36, 235–246 (2008). Article  Google Scholar  * Knutsen, G. _ et al_. Autologous


chondrocyte implantation compared with microfracture in the knee. A randomized trial. _J. Bone Joint Surg. Am._ 86-A, 455–464 (2004). Article  Google Scholar  * Kiviranta, P. _ et al_.


Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration. _Eur. Cell. Mater._ 13, 46–55 (2007). Article  CAS  Google Scholar  * Brown, W. E.,


Potter, H. G., Marx, R. G., Wickiewicz, T. L. & Warren, R. F. Magnetic resonance imaging appearance of cartilage repair in the knee. _Clin. Orthop. Relat. Res._ 422, 214–223 (2004).


Article  Google Scholar  * Saarakkala, S. _ et al_. Ultrasonic quantitation of superficial degradation of articular cartilage. _Ultrasound Med. Biol._ 30, 783–792 (2004). Article  Google


Scholar  * Charni-Ben Tabassi, N. & Garnero, P. Monitoring cartilage turnover. _Curr. Rheumatol. Rep._ 9, 16–24 (2007). Article  CAS  Google Scholar  * Garnero, P. Use of biochemical


markers to study and follow patients with osteoarthritis. _Curr. Rheumatol. Rep._ 8, 37–44 (2006). Article  Google Scholar  * Wakitani, S. _ et al_. Serum keratan sulfate is a promising


marker of early articular cartilage breakdown. _Rheumatology (Oxford)_ 46, 1652–1656 (2007). Article  CAS  Google Scholar  * Zhen, E. Y. _ et al_. Characterization of metalloprotease


cleavage products of human articular cartilage. _Arthritis Rheum._ 58, 2420–2431 (2008). Article  CAS  Google Scholar  * Tehranzadeh, J., Booya, F. & Root, J. Cartilage metabolism in


osteoarthritis and the influence of viscosupplementation and steroid: a review. _Acta Radiol._ 46, 288–296 (2005). Article  CAS  Google Scholar  * Altman, R. D. Status of hyaluronan


supplementation therapy in osteoarthritis. _Curr. Rheumatol. Rep._ 5, 7–14 (2003). Article  Google Scholar  * Snibbe, J. C. & Gambardella, R. A. Treatment options for osteoarthritis.


_Orthopedics_ 28, s215–s220 (2005). PubMed  Google Scholar  * Juni, P. _ et al_. Efficacy and safety of intraarticular hylan or hyaluronic acids for osteoarthritis of the knee: a randomized


controlled trial. _Arthritis Rheum._ 56, 3610–3619 (2007). Article  CAS  Google Scholar  * Raman, R. _ et al_. Efficacy of Hylan G-F 20 and sodium hyaluronate in the treatment of


osteoarthritis of the knee—a prospective randomized clinical trial. _Knee_ 15, 318–324 (2008). Article  CAS  Google Scholar  * Lai, H. Y. _ et al_. Intra-articular hyaluronic acid for


treatment of osteoarthritis: a nationwide study among the older population of Taiwan. _BMC Health Serv. Res._ 8, 24 (2008). Article  Google Scholar  * Goggs, R. _ et al_. Nutraceutical


therapies for degenerative joint diseases: a critical review. _Crit. Rev. Food Sci. Nutr._ 45, 145–164 (2005). Article  CAS  Google Scholar  * Basalo, I. M. _ et al_. Chondroitin sulfate


reduces the friction coefficient of articular cartilage. _J. Biomech._ 40, 1847–1854 (2007). Article  Google Scholar  * Kahan, A., Uebelhart, D., De Vathaire, F., Delmas, P. D. &


Reginster, J. Y. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind,


placebo-controlled trial. _Arthritis Rheum._ 60, 524–533 (2009). Article  CAS  Google Scholar  * Gouze, J. N. _ et al_. Exogenous glucosamine globally protects chondrocytes from the


arthritogenic effects of IL-1β. _Arthritis Res. Ther._ 8, R173 (2006). Article  Google Scholar  * Clegg, D. O. _ et al_. Glucosamine, chondroitin sulfate, and the two in combination for


painful knee osteoarthritis. _N. Engl. J. Med._ 354, 795–808 (2006). Article  CAS  Google Scholar  * Hughes, L. C., Archer, C. W. & ap Gwynn, I. The ultrastructure of mouse articular


cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. _Eur. Cell. Mater._ 9, 68–84 (2005). Article 


CAS  Google Scholar  * Tuli, R., Li, W. J. & Tuan, R. S. Current state of cartilage tissue engineering. _Arthritis Res. Ther._ 5, 235–238 (2003). Article  CAS  Google Scholar  * Kessler,


M. W. & Grande, D. A. Tissue engineering and cartilage. _Organogenesis_ 4, 28–32 (2008). Article  Google Scholar  * Kujawa, M. J. & Caplan, A. I. Hyaluronic acid bonded to


cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. _Dev. Biol._ 114, 504–518 (1986). Article  CAS  Google Scholar  * Solchaga, L. A. _ et al_.


Hyaluronan-based polymers in the treatment of osteochondral defects. _J. Orthop. Res._ 18, 773–780 (2000). Article  CAS  Google Scholar  * Hollander, A. P. _ et al_. Maturation of tissue


engineered cartilage implanted in injured and osteoarthritic human knees. _Tissue Eng._ 12, 1787–1798 (2006). Article  CAS  Google Scholar  * Marcacci, M. _ et al_. Articular cartilage


engineering with Hyalograft C: 3-year clinical results. _Clin. Orthop. Relat. Res._ 435, 96–105 (2005). Article  Google Scholar  * Nehrer, S. _ et al_. Three-year clinical outcome after


chondrocyte transplantation using a hyaluronan matrix for cartilage repair. _Eur. J. Radiol._ 57, 3–8 (2006). Article  CAS  Google Scholar  * Brun, P. _ et al_. Chondrocyte aggregation and


reorganization into three-dimensional scaffolds. _J. Biomed. Mater. Res._ 46, 337–346 (1999). Article  CAS  Google Scholar  * Campoccia, D. _ et al_. Semisynthetic resorbable materials from


hyaluronan esterification. _Biomaterials_ 19, 2101–2127 (1998). Article  CAS  Google Scholar  * Liao, E., Yaszemski, M., Krebsbach, P. & Hollister, S. Tissue-engineered cartilage


constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. _Tissue Eng._ 13, 537–550 (2007). Article  CAS  Google Scholar  * Masuda, K.,


Sah, R. L., Hejna, M. J. & Thonar, E. J. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC)


method. _J. Orthop. Res._ 21, 139–148 (2003). Article  CAS  Google Scholar  * Mauck, R. L. _ et al_. Functional tissue engineering of articular cartilage through dynamic loading of


chondrocyte-seeded agarose gels. _J. Biomech. Eng._ 122, 252–260 (2000). Article  CAS  Google Scholar  * Sharma, B. & Elisseeff, J. H. Engineering structurally organized cartilage and


bone tissues. _Ann. Biomed. Eng._ 32, 148–159 (2004). Article  Google Scholar  * Mauck, R. L., Nicoll, S. B., Seyhan, S. L., Ateshian, G. A. & Hung, C. T. Synergistic action of growth


factors and dynamic loading for articular cartilage tissue engineering. _Tissue Eng._ 9, 597–611 (2003). Article  CAS  Google Scholar  * Huang, A. H., Yeger-McKeever, M., Stein, A. &


Mauck, R. L. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. _Osteoarthritis Cartilage_ 16, 1074–1082 (2008). Article  CAS  Google Scholar  *


Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. _Nat. Mater._ 6, 162–167 (2007). Article


  CAS  Google Scholar  * Price, R. L., Waid, M. C., Haberstroh, K. M. & Webster, T. J. Selective bone cell adhesion on formulations containing carbon nanofibers. _Biomaterials_ 24,


1877–1887 (2003). Article  CAS  Google Scholar  * Chahine, N. O., Collette, N. M., Bahadori, S. & Loots, G. G. Biocompatibility of carbon nanotubes for chondrocyte growth. _Transactions


of the Orthopedic Research Society_, San Francisco, CA, Paper #576 (2008). Google Scholar  * Nettles, D. L., Vail, T. P., Morgan, M. T., Grinstaff, M. W. & Setton, L. A.


Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. _Ann. Biomed. Eng._ 32, 391–397 (2004). Article  Google Scholar  * Solchaga, L. A. _ et al_. A rapid seeding


technique for the assembly of large cell/scaffold composite constructs. _Tissue Eng._ 12, 1851–1863 (2006). Article  CAS  Google Scholar  * Li, W. J., Jiang, Y. J. & Tuan, R. S.


Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. _Tissue Eng. Part A_ 14, 639–648 (2008). Article  CAS  Google


Scholar  * Baker, B. M. _ et al_. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. _Biomaterials_


29, 2348–2358 (2008). Article  CAS  Google Scholar  * Steinwachs, M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. _Arthroscopy_ 25, 208–211


(2009). Article  Google Scholar  * Kon, E. _ et al_. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee:


prospective nonrandomized study at 5 years. _Am. J. Sports Med._ 37, 33–41 (2009). Article  Google Scholar  * Bartlett, W. _ et al_. Autologous chondrocyte implantation versus matrix-induced


autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. _J. Bone Joint Surg. Br._ 87, 640–645 (2005). Article  CAS  Google Scholar  *


Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R. R. Organ printing: computer-aided jet-based 3D tissue engineering. _Trends Biotechnol._ 21, 157–61 (2003). Article  CAS 


Google Scholar  * L'Heureux, N. _ et al_. Human tissue-engineered blood vessels for adult arterial revascularization. _Nat. Med._ 12, 361–365 (2006). Article  CAS  Google Scholar  *


L'Heureux, N., McAllister, T. N. & de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. _N. Engl. J. Med._ 357, 1451–1453 (2007). Article  CAS 


Google Scholar  * Mrugala, D. _ et al_. Gene expression profile of multipotent mesenchymal stromal cells: identification of pathways common to TGFβ3/BMP2-induced chondrogenesis. _Cloning


Stem Cells_ 11, 61–76 (2009). Article  CAS  Google Scholar  * Chuma, H., Mizuta, H., Kudo, S., Takagi, K. & Hiraki, Y. One day exposure to FGF-2 was sufficient for the regenerative


repair of full-thickness defects of articular cartilage in rabbits. _Osteoarthritis Cartilage_ 12, 834–842 (2004). Article  CAS  Google Scholar  * Shi, S., Mercer, S., Eckert, G. J. &


Trippel, S. B. Growth factor regulation of growth factors in articular chondrocytes. _J. Biol. Chem._ 284, 6697–6704 (2009). Article  CAS  Google Scholar  * Elisseeff, J., McIntosh, W., Fu,


K., Blunk, B. T. & Langer, R. Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. _J. Orthop. Res._ 19, 1098–1104 (2001). Article 


CAS  Google Scholar  * Fan, H. _ et al_. Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-β1 induces differentiation of mesenchymal stem


cells _in vivo_ for enhancing cartilage repair. _J. Biomed. Mater. Res. A_ 77, 785–794 (2006). Article  Google Scholar  * Martinek, V., Ueblacker, P. & Imhoff, A. B. Current concepts of


gene therapy and cartilage repair. _J. Bone Joint Surg. Br._ 85, 782–788 (2003). Article  CAS  Google Scholar  * Grande, D. A., Mason, J., Light, E. & Dines, D. Stem cells as platforms


for delivery of genes to enhance cartilage repair. _J. Bone Joint Surg. Am._ 85-A (Suppl. 2), 111–116 (2003). Article  Google Scholar  * Lima, E. G. _ et al_. The beneficial effect of


delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. _Osteoarthritis Cartilage_ 15, 1025–1033 (2007). Article  CAS  Google Scholar  * Wu, W. _ et al_.


Platelet-rich plasma—a promising cell carrier for micro-invasive articular cartilage repair. _Med. Hypotheses_ 72, 455–457 (2009). Article  Google Scholar  * Koelling, S. _ et al_. Migratory


chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. _Cell Stem Cell_ 4, 324–335 (2009). Article  CAS  Google Scholar  * Erickson, G. R. _ et


al_. Chondrogenic potential of adipose tissue-derived stromal cells _in vitro_ and _in vivo_. _Biochem. Biophys. Res. Commun._ 290, 763–769 (2002). Article  CAS  Google Scholar  * Rosenbaum,


A. J., Grande, D. A. & Dines, J. S. The use of mesenchymal stem cells in tissue engineering: a global assessment. _Organogenesis_ 4, 23–27 (2008). Article  Google Scholar  * Hwang, N.


S. & Elisseeff, J. Application of stem cells for articular cartilage regeneration. _J. Knee Surg._ 22, 60–71 (2009). Article  Google Scholar  * Kim, H. T., Zaffagnini, S., Mizuno, S.,


Abelow, S. & Safran, M. R. A peek into the possible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair. _J. Orthop. Sports Phys. Ther._


36, 765–773 (2006). Article  Google Scholar  * Palmer, G. _ et al_. Development of gene-based therapies for cartilage repair. _Crit. Rev. Eukaryot. Gene Expr._ 12, 259–273 (2002). Article 


CAS  Google Scholar  * Trippel, S. B., Ghivizzani, S. C. & Nixon, A. J. Gene-based approaches for the repair of articular cartilage. _Gene Ther._ 11, 351–359 (2004). Article  CAS  Google


Scholar  * Gafni, Y. _ et al_. Stem cells as vehicles for orthopedic gene therapy. _Gene Ther._ 11, 417–426 (2004). Article  CAS  Google Scholar  Download references AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Department of Orthopedics, Long Island Jewish Medical Center, New Hyde Park, NY, USA Robert J. Daher, Andrew S. Greenberg & Nicholas A. Sgaglione *  The


Feinstein Institute for Medical Research, Manhasset, NY, USA Nadeen O. Chahine & Daniel A. Grande Authors * Robert J. Daher View author publications You can also search for this author


inPubMed Google Scholar * Nadeen O. Chahine View author publications You can also search for this author inPubMed Google Scholar * Andrew S. Greenberg View author publications You can also


search for this author inPubMed Google Scholar * Nicholas A. Sgaglione View author publications You can also search for this author inPubMed Google Scholar * Daniel A. Grande View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Daniel A. Grande. ETHICS DECLARATIONS COMPETING INTERESTS N.A. Sgaglione has


acted as a consultant for Arthrocare, BioSyntech, ConMed Linvatec, Smith and Nephew Endoscopy and TiGenix. D.A. Grande has acted as a consultant for Arthrocare and TiGenix. The other authors


declare no competing interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Daher, R., Chahine, N., Greenberg, A. _et al._ New methods to diagnose


and treat cartilage degeneration. _Nat Rev Rheumatol_ 5, 599–607 (2009). https://doi.org/10.1038/nrrheum.2009.204 Download citation * Published: 29 September 2009 * Issue Date: November 2009


* DOI: https://doi.org/10.1038/nrrheum.2009.204 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is


not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative