Joint diseases: from connexins to gap junctions

Joint diseases: from connexins to gap junctions

Play all audios:

Loading...

KEY POINTS * Multiple connexins are expressed in musculoskeletal tissues, including in joints * Gap-junctional intercellular communication contributes to interconnected cell syncytium, which


connect various cell types within joints * Connexin dysfunction might contribute to joint disease * Emerging data suggest that connexins might be novel targets for treating joint disease


ABSTRACT Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels,


releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions,


membrane-spanning channels that facilitate cell–cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed


in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins,


but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that


connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional


channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and


highlights the therapeutic potential of connexins. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more


Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PANNEXINS IN THE MUSCULOSKELETAL SYSTEM: NEW TARGETS FOR DEVELOPMENT AND DISEASE PROGRESSION Article Open access 06 May 2024


ION CHANNELS IN OSTEOARTHRITIS: EMERGING ROLES AND POTENTIAL TARGETS Article 09 August 2024 CARTILAGE CALCIFICATION IN OSTEOARTHRITIS: MECHANISMS AND CLINICAL RELEVANCE Article 12 December


2022 REFERENCES * Genetos, D. C., Kephart, C. J., Zhang, Y., Yellowley, C. E. & Donahue, H. J. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from


MLO-Y4 osteocytes. _J. Cell. Physiol._ 212, 207–214 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jiang, J. X. & Cherian, P. P. Hemichannels formed by connexin 43 play


an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. _Cell Commun. Adhes._ 10, 259–264 (2003). CAS  PubMed  Google Scholar  * Donahue, H.


Gap junctions and biophysical regulation of bone cell differentiation. _Bone_ 26, 417–422 (2000). Article  CAS  PubMed  Google Scholar  * Thi, M. M., Islam, S., Suadicani, S. O. & Spray,


D. C. Connexin 43 and pannexin 1 channels in osteoblasts: who is the “hemichannel”? _J. Membr. Biol._ 245, 401–409 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Willecke,


K. _ et al_. Structural and functional diversity of connexin genes in the mouse and human genome. _Biol. Chem._ 383, 725–737 (2002). Article  CAS  PubMed  Google Scholar  * Beyer, E. C.,


Paul, D. L. & Goodenough, D. A. Connexin 43: a protein from rat heart homologous to a gap junction protein from liver. _J. Cell Biol._ 105, 2621–2629 (1987). Article  CAS  PubMed  Google


Scholar  * Kumar, N. M. & Gilula, N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. _J. Cell Biol._ 103, 767–776 (1986). Article  CAS 


PubMed  Google Scholar  * Toyofuku, T. _ et al_. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. _J. Biol. Chem._ 273, 12725–12731 (1998). Article 


CAS  PubMed  Google Scholar  * Plotkin, L. I. & Bellido, T. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of


connexin 43. _Cell Commun. Adhes._ 8, 377–382 (2001). Article  CAS  PubMed  Google Scholar  * Plotkin, L. I., Manolagas, S. C. & Bellido, T. Transduction of cell survival signals by


connexin-43 hemichannels. _J. Biol. Chem._ 277, 8648–8657 (2002). Article  CAS  PubMed  Google Scholar  * Stains, J. P. & Civitelli, R. Connexins in the skeleton. _Semin. Cell Dev.


Biol._ 50, 31–39 (2016). Article  CAS  PubMed  Google Scholar  * Loiselle, A. E., Jiang, J. X. & Donahue, H. J. Gap junction and hemichannel functions in osteocytes. _Bone_ 54, 205–212


(2013). Article  CAS  PubMed  Google Scholar  * Kumar, N. M. & Gilula, N. B. The gap junction communication channel. _Cell_ 84, 381–388 (1996). Article  CAS  PubMed  Google Scholar  *


Martinez, A. D., Hayrapetyan, V., Moreno, A. P. & Beyer, E. C. Connexin 43 and connexin 45 form heteromeric gap junction channels in which individual components determine permeability


and regulation. _Circ. Res._ 90, 1100–1107 (2002). Article  CAS  PubMed  Google Scholar  * Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell and more.


_Endocr. Rev._ 34, 658–690 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, Z., Zhou, Z., Saunders, M. M. & Donahue, H. J. Modulation of connexin 43 alters expression


of osteoblastic differentiation markers. _Am. J. Physiol. Cell Physiol._ 290, C1248–C1255 (2006). Article  CAS  PubMed  Google Scholar  * Grellier, M., Bareille, R., Bourget, C. &


Amedee, J. Responsiveness of human bone marrow stromal cells to shear stress. _J. Tissue Eng. Regen Med._ 3, 302–309 (2009). Article  CAS  PubMed  Google Scholar  * Stains, J. P. &


Civitelli, R. Gap junctions in skeletal development and function. _Biochim. Biophys. Acta_ 1719, 69–81 (2005). Article  CAS  PubMed  Google Scholar  * Krüger, O. _ et al_. Defective vascular


development in connexin 45-deficient mice. _Development_ 127, 4179–4193 (2000). PubMed  Google Scholar  * Chaible, L. M., Sanches, D. S., Cogliati, B., Mennecier, G. & Dagli, M. L. Z.


Delayed osteoblastic differentiation and bone development in Cx43 knockout mice. _Toxicol. Pathol._ 39, 1046–1055 (2011). Article  CAS  PubMed  Google Scholar  * Koval, M., Harley, J., Hick,


E. & Steinberg, T. Connexin 46 is retained as monomers in a _trans_-Golgi compartment of osteoblastic cells. _J. Cell Biol._ 137, 847–857 (1997). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Pacheco-Costa, R. _ et al_. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation. _J. Biol. Chem._ 289, 8508–8520 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Paic, F. _ et al_. Identification of differentially expressed genes between osteoblasts and osteocytes. _Bone_ 45, 682–692 (2009). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Reaume, A. G. _ et al_. Cardiac malformation in neonatal mice lacking connexin 43. _Science_ 267, 1831–1834 (1995). Article  CAS  PubMed  Google


Scholar  * Lecanda, F. _ et al_. Connexin 43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. _J. Cell Biol._ 151, 931–944 (2000). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Chung, D. J. _ et al_. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of


connexin 43. _J. Cell Sci._ 119, 4187–4198 (2006). Article  CAS  PubMed  Google Scholar  * Lima, F., Niger, C., Hebert, C. & Stains, J. P. Connexin 43 potentiates osteoblast


responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism. _Mol. Biol. Cell_ 20, 2697–2708 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Otto, F. _ et al_. _Cbfa1_, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. _Cell_ 89, 765–771 (1997).


Article  CAS  PubMed  Google Scholar  * Buo, A. M., Tomlinson, R. E., Eidelman, E. R., Chason, M. & Stains, J. P. Connexin 43 and Runx2 interact to affect cortical bone geometry,


skeletal development, and osteoblast and osteoclast function. _J. Bone Miner. Res._ 32, 1727–1738 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paznekas, W. A. _ et al_.


Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. _Am. J. Hum. Genet._ 72, 408–418 (2003). Article  CAS  PubMed  Google Scholar  * Paznekas, W. A.


_ et al_. _GJA1_ mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. _Hum. Mutat._ 30, 724–733 (2009). Article  CAS  PubMed  Google


Scholar  * Laird, D. W. Syndromic and non-syndromic disease-linked Cx43 mutations. _FEBS Lett._ 588, 1339–1348 (2014). Article  CAS  PubMed  Google Scholar  * Chiba, H. _ et al_.


Relationship between the expression of the gap junction protein and osteoblast phenotype in a human osteoblastic cell line during cell proliferation. _Cell Struct. Funct._ 18, 419–426


(1993). Article  CAS  PubMed  Google Scholar  * Schiller, P. C., Roos, B. A. & Howard, G. A. Parathyroid hormone up-regulation of connexin 43 gene expression in osteoblasts depends on


cell phenotype. _J. Bone Miner. Res._ 12, 2005–2013 (1997). Article  CAS  PubMed  Google Scholar  * Lecanda, F. _ et al_. Gap junctional communication modulates gene expression in


osteoblastic cells. _Mol. Biol. Cell_ 9, 2249–2258 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Watkins, M. _ et al_. Osteoblast connexin 43 modulates skeletal


architecture by regulating both arms of bone remodeling. _Mol. Biol. Cell_ 22, 1240–1251 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bivi, N. _ et al_. Cell autonomous


requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. _J. Bone Miner. Res._ 27, 374–389 (2011). Article  CAS  Google


Scholar  * Grimston, S. K., Watkins, M. P., Brodt, M. D., Silva, M. J. & Civitelli, R. Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional


connexin 43 deficient mice. _PLoS ONE_ 7, e44222 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ilvesaro, J., Tavi, P. & Tuukkanen, J. Connexin-mimetic peptide Gap 27


decreases osteoclastic activity. _BMC Musculoskelet Disord._ 2, 10 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ilvesaro, J., Vaananen, K. & Tuukkanen, J.


Bone-resorbing osteoclasts contain gap-junctional connexin-43. _J. Bone Miner. Res._ 15, 919–926 (2000). Article  CAS  PubMed  Google Scholar  * Ransjö, M., Sahli, J. & Lie, A.


Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption _in vitro_ by gap junction inhibitors. 303, 1179–1185 (2003). * Jeansonne, B. G., Feagin,


F. F., McMinn, R. W., Shoemaker, R. L. & Rehm, W. S. Cell-to-cell communication of osteoblasts. _J. Dent. Res._ 58, 1415–1423 (1979). Article  CAS  PubMed  Google Scholar  * Yellowley,


C. E., Li, Z., Zhou, Z., Jacobs, C. R. & Donahue, H. J. Functional gap junctions between osteocytic and osteoblastic cells. _J. Bone Miner. Res._ 15, 209–217 (2000). Article  CAS  PubMed


  Google Scholar  * Rawlinson, S., Pitsillides, A. & Lanyon, L. Involvement of different ion channels in osteoblasts' and osteocytes' early response to mechanical strain.


_Bone_ 19, 609–614 (1996). Article  CAS  PubMed  Google Scholar  * Duncan, R. L. & Turner, C. H. Mechanotransduction and the functional response of bone to mechanical strain. _Calcif.


Tissue Int._ 57, 344–358 (1995). Article  CAS  PubMed  Google Scholar  * Ziambaras, K., Lecanda, F., Steinberg, T. H. & Civitelli, R. Cyclic stretch enhances gap junctional communication


between osteoblastic cells. _J. Bone Miner. Res._ 13, 218–228 (1998). Article  CAS  PubMed  Google Scholar  * Alford, A. I., Jacobs, C. R. & Donahue, H. J. Oscillating fluid flow


regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism. _Bone_ 33, 64–70 (2003). Article  CAS  PubMed  Google Scholar  * Cherian, P. P. _


et al_. Effects of mechanical strain on the function of gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. _J. Biol. Chem._ 278, 43146–43156 (2003). Article 


CAS  PubMed  Google Scholar  * Cheng, B. _ et al_. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. _J. Bone Miner. Res._ 16, 249–259


(2001). Article  CAS  PubMed  Google Scholar  * Thi, M., Kojima, T., Cowin, S., Weinbaum, S. & Spray, D. Fluid shear stress remodels expression and function of junctional proteins in


cultured bone cells. _Am. J. Physiol. Cell Physiol._ 284, C389–C403 (2003). Article  CAS  PubMed  Google Scholar  * Li, X. _ et al_. Connexin 43 is a potential regulator in fluid shear


stress-induced signal transduction in osteocytes. _J. Orthop. Res._ 31, 1959–1965 (2013). Article  CAS  PubMed  Google Scholar  * Saunders, M. M. _ et al_. Gap junctions and fluid flow


response in MC3T3-E1 cells. _Am. J. Physiol. Cell Physiol._ 281, C1917–C1925 (2001). Article  CAS  PubMed  Google Scholar  * Schirrmacher, K. & Bingmann, D. Effects of vitamin D3,


17β-estradiol, vasoactive intestinal peptide, and glutamate on electric coupling between rat osteoblast-like cells _in vitro_. _Bone_ 23, 521–526 (1998). Article  CAS  PubMed  Google Scholar


  * Taylor, A. F. _ et al_. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. _Am. J. Physiol. Cell Physiol._ 292, C545–C552 (2007). Article  CAS  PubMed 


Google Scholar  * Jørgensen, N. R. _ et al_. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. _J. Bone Miner. Res._ 15, 1024–1032 (2000). Article


  PubMed  Google Scholar  * Bonewald, L. F. The amazing osteocyte. _J. Bone Miner. Res._ 26, 229–238 (2011). Article  CAS  PubMed  Google Scholar  * Batra, N. _ et al_. Mechanical


stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. _Proc. Natl Acad. Sci. USA_ 109, 3359–3364 (2012). Article  PubMed  Google Scholar  * Civitelli, R. Cell-cell


communication in the osteoblast/osteocyte lineage. _Arch. Biochem. Biophys._ 473, 188–192 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grimston, S. K., Brodt, M. D.,


Silva, M. J. & Civitelli, R. Attenuated response to _in vivo_ mechanical loading in mice with conditional osteoblast ablation of the connexin 43 gene (_Gja1_). _J. Bone Miner. Res._ 23,


879–886 (2008). Article  PubMed  PubMed Central  Google Scholar  * Zhang, Y. _ et al_. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone.


_PLoS ONE_ 6, e23516 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bivi, N. _ et al_. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical


force in mice. _J. Orthop. Res._ 31, 1075–1081 (2013). Article  CAS  PubMed  Google Scholar  * Lloyd, S. A., Loiselle, A. E., Zhang, Y. & Donahue, H. J. Connexin 43 deficiency


desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. _Bone_ 57, 76–83 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Grimston, S. K. _ et al_. Connexin 43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. _J. Bone Miner. Res._ 26, 2151–2160 (2011). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Robling, A. G. _ et al_. Mechanical stimulation of bone _in vivo_ reduces osteocyte expression of Sost/sclerostin. _J. Biol. Chem._ 283, 5866–5875 (2008).


Article  CAS  PubMed  Google Scholar  * Tu, X. _ et al_. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. _Bone_ 50, 209–217


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Oyamada, M., Takebe, K. & Oyamada, Y. Regulation of connexin expression by transcription factors and epigenetic


mechanisms. _Biochim. Biophys. Acta_ 1828, 118–133 (2013). Article  CAS  PubMed  Google Scholar  * Robinson, J. A. _ et al_. Wnt/β-catenin signaling is a normal physiological response to


mechanical loading in bone. _J. Biol. Chem._ 281, 31720–31728 (2006). Article  CAS  PubMed  Google Scholar  * Xu, H. _ et al_. Connexin 43 channels are essential for normal bone structure


and osteocyte viability. _J. Bone Miner. Res._ 30, 550–562 (2015). CAS  PubMed Central  Google Scholar  * Somoza, R. A., Welter, J. F., Correa, D. & Caplan, A. I. Chondrogenic


differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. _Tissue Eng. Part B Rev._ 20, 596–608 (2014). Article  PubMed  PubMed Central  Google Scholar  * Eiberger,


J. _ et al_. Expression pattern and functional characterization of connexin 29 in transgenic mice. _Glia_ 53, 601–611 (2006). Article  PubMed  Google Scholar  * Ralphs, J. R. _ et al_.


Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. _J. Anat._ 193, 215–222 (1998). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Bruehlmann, S. B., Rattner, J. B., Matyas, J. R. & Duncan, N. A. Regional variations in the cellular matrix of the annulus fibrosus of the


intervertebral disc. _J. Anat._ 201, 159–171 (2002). Article  PubMed  PubMed Central  Google Scholar  * Hellio Le Graverand, M. P. _ et al_. Formation and phenotype of cell clusters in


osteoarthritic meniscus. _Arthritis Rheum._ 44, 1808–1818 (2001). Article  CAS  PubMed  Google Scholar  * Gruber, H. E., Ma, D., Hanley, E. N., Ingram, J. & Yamaguchi, D. T. Morphologic


and molecular evidence for gap junctions and connexin 43 and 45 expression in annulus fibrosus cells from the human intervertebral disc. _J. Orthop. Res._ 19, 985–989 (2001). Article  CAS 


PubMed  Google Scholar  * Knight, M. M., McGlashan, S. R., Garcia, M., Jensen, C. G. & Poole, C. A. Articular chondrocytes express connexin 43 hemichannels and P2 receptors - a putative


mechanoreceptor complex involving the primary cilium? _J. Anat._ 214, 275–283 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mayan, M. D. _ et al_. Human articular


chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. _Am. J. Pathol._ 182, 1337–1346 (2013). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Schwab, W., Hofer, A. & Kasper, M. Immunohistochemical distribution of connexin 43 in the cartilage of rats and mice. _Histochem. J._ 30, 413–419


(1998). Article  CAS  PubMed  Google Scholar  * Donahue, H. J. _ et al_. Chondrocytes isolated from mature articular cartilage retain the capacity to form functional gap junctions. _J. Bone


Miner. Res._ 10, 1359–1364 (1995). Article  CAS  PubMed  Google Scholar  * Mayan, M. D. _ et al_. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage


homeostasis. _Ann. Rheum. Dis._ 74, 275–284 (2015). Article  CAS  PubMed  Google Scholar  * D'Andrea, P. & Vittur, F. Propagation of intercellular Ca2+ waves in mechanically


stimulated articular chondrocytes. _FEBS Lett._ 400, 58–64 (1997). Article  CAS  PubMed  Google Scholar  * Schrobback, K., Klein, T. J. & Woodfield, T. B. F. The importance of connexin


hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. _Tissue Engineer. Part A_ 21, 1785–1794 (2015). Article  CAS  Google Scholar  *


Loty, S., Foll, C., Forest, N. & Sautier, J. M. Association of enhanced expression of gap junctions with _in vitro_ chondrogenic differentiation of rat nasal septal cartilage-released


cells following their dedifferentiation and redifferentiation. _Arch. Oral Biol._ 45, 843–856 (2000). Article  CAS  PubMed  Google Scholar  * Willebrords, J., Maes, M., Crespo Yanguas, S.


& Vinken, M. Inhibitors of connexin and pannexin channels as potential therapeutics. _Pharmacol. Ther._ 180, 144–160 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Garcia, M. & Knight, M. M. Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. _J. Orthop. Res._ 28, 510–515 (2010). CAS  PubMed 


Google Scholar  * Contreras, J. E. _ et al_. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical


astrocytes in culture. _Proc. Natl Acad. Sci. USA_ 99, 495–500 (2002). Article  CAS  PubMed  Google Scholar  * Stout, C., Costantin, J., Naus, C. & Charles, A. Intercellular calcium


signaling in astrocytes via ATP release through connexin hemichannels. _J. Biol. Chem._ 277, 10482–10488 (2002). Article  CAS  PubMed  Google Scholar  * Gomes, P., Srinivas, S. P., Van


Driessche, W., Vereecke, J. & Himpens, B. ATP release through connexin hemichannels in corneal endothelial cells. _Invest. Ophthalmol. Vis. Sci._ 46, 1208–1218 (2005). Article  PubMed 


Google Scholar  * Burnstock, G., Arnett, T. R. & Orriss, I. R. Purinergic signalling in the musculoskeletal system. _Purinerg. Signal_ 9, 541–572 (2013). Article  CAS  Google Scholar  *


Graff, R. D., Lazarowski, E. R., Banes, A. J. & Lee, G. M. ATP release by mechanically loaded porcine chondrons in pellet culture. _Arthritis Rheum._ 43, 1571–1579 (2000). Article  CAS 


PubMed  Google Scholar  * Zhang, J. _ et al_. Connexin 43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint


cartilage. _Osteoarthr. Cartilage_ 22, 822–830 (2014). Article  CAS  Google Scholar  * Groth, H. P. Cellular contacts in the synovial membrane of the cat and the rabbit: an ultrastructural


study. _Cell Tissue Res._ 164, 52541 (1975). Article  CAS  PubMed  Google Scholar  * Dryll, A., Lansaman, J., Peltier, A. P. & Ryckewaert, A. Cellular junctions in normal and


inflammatory human synovial-membrane revealed by tannic-acid and freeze-fracture. _Virchows Arch. A Pathol. Anat. Histol._ 386, 293–302 (1980). Article  CAS  PubMed  Google Scholar  *


Kolomytkin, O. V. _ et al_. Gap junctions in human synovial cells and tissue. _J. Cell. Physiol._ 184, 110–117 (2000). Article  CAS  PubMed  Google Scholar  * Capozzi, I., Tonon, R. &


D'Andrea, P. Ca2+-sensitive phosphoinositide hydrolysis is activated in synovial cells but not in articular chondrocytes. _Biochem. J._ 344, 545–553 (1999). Article  CAS  PubMed  PubMed


Central  Google Scholar  * D'Andrea, P., Calabrese, A. & Grandolfo, M. Intercellular calcium signalling between chondrocytes and synovial cells in co-culture. _Biochem. J._ 329,


681–687 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Merrifield, P. A. & Laird, D. W. Connexins in skeletal muscle development and disease. _Semin. Cell Dev. Biol._


50, 67–73 (2016). Article  CAS  PubMed  Google Scholar  * von Maltzahn, J., Euwens, C., Willecke, K. & Söhl, G. The novel mouse connexin 39 gene is expressed in developing striated


muscle fibers. _J. Cell Sci._ 117, 5381–5392 (2004). Article  CAS  PubMed  Google Scholar  * Belluardo, N., Trovato-Salinaro, A., Mudò, G. & Condorelli, D. F. Expression of the rat


connexin 39 (rCx39) gene in myoblasts and myotubes in developing and regenerating skeletal muscles: an _in situ_ hybridization study. _Cell Tissue Res._ 320, 299–310 (2005). Article  CAS 


PubMed  Google Scholar  * von Maltzahn, J., Wulf, V. & Willecke, K. Spatiotemporal expression of connexin 39 and 43 during myoblast differentiation in cultured cells and in the mouse


embryo. _Cell Commun. Adhes._ 13, 55–60 (2006). Article  CAS  PubMed  Google Scholar  * von Maltzahn, J., Wulf, V., Matern, G. & Willecke, K. Connexin 39 deficient mice display


accelerated myogenesis and regeneration of skeletal muscle. _Exp. Cell Res._ 317, 1169–1178 (2011). Article  CAS  PubMed  Google Scholar  * Dahl, E., Winterhager, E., Traub, O. &


Willecke, K. Expression of gap junction genes, connexin 40 and connexin 43, during fetal mouse development. _Anat. Embryol._ 191, 267–278 (1995). Article  CAS  PubMed  Google Scholar  *


Balogh, S., Naus, C. C. & Merrifield, P. A. Expression of gap junctions in cultured rat L6 cells during myogenesis. _Dev. Biol._ 155, 351–360 (1993). Article  CAS  PubMed  Google Scholar


  * Proulx, A., Merrifield, P. A. & Naus, C. Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. _Dev. Genet._ 20, 133–144 (1997).


Article  CAS  PubMed  Google Scholar  * Yamanouchi, K., Yada, E., Ishiguro, N. & Nishihara, M. 18α-glycyrrhetinic acid induces phenotypic changes of skeletal muscle cells to enter


adipogenesis. _Cell. Physiol. Biochem._ 20, 781–790 (2007). Article  CAS  PubMed  Google Scholar  * Plotkin, L. I., Davis, H. M., Cisterna, B. A. & Sáez, J. C. Connexins and pannexins in


bone and skeletal muscle. _Curr. Osteoporosis Rep._ 15, 326–334 (2017). Article  Google Scholar  * Araya, R. _ et al_. Expression of connexins during differentiation and regeneration of


skeletal muscle: functional relevance of connexin 43. _J. Cell Sci._ 118, 27–37 (2005). Article  CAS  PubMed  Google Scholar  * Cea, L. A. _ et al_. De novo expression of connexin


hemichannels in denervated fast skeletal muscles leads to atrophy. _Proc. Natl Acad. Sci. USA_ 110, 16229–16234 (2013). Article  PubMed  Google Scholar  * Cea, L. A. _ et al_. Fast skeletal


myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. _Cell. Mol. Life Sci._ 73, 2583–2599 (2016). Article  CAS  PubMed  Google


Scholar  * Muramatsu, T. _ et al_. Reduction of connexin 43 expression in aged human dental pulp. _Int. Endod J._ 37, 814–818 (2004). Article  CAS  PubMed  Google Scholar  * Yeh, H. I. _ et


al_. Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. _J. Histochem. Cytochem._ 48, 1377–1389 (2000). Article  CAS  PubMed  Google


Scholar  * Xie, H. Q. & Hu, V. W. Modulation of gap junctions in senescent endothelial cells. _Exp. Cell Res._ 214, 172–176 (1994). Article  CAS  PubMed  Google Scholar  * Boengler, K.,


Heusch, G. & Schulz, R. Connexin 43 and ischemic preconditioning: effects of age and disease. _Exp. Gerontol._ 41, 485–488 (2006). Article  CAS  PubMed  Google Scholar  * Genetos, D. C.,


Zhou, Z., Li, Z. & Donahue, H. J. Age-related changes in gap junctional intercellular communication in osteoblastic cells. _J. Orthop. Res._ 30, 1979–1984 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Kastner, M. _ et al_. Complex interventions can increase osteoporosis investigations and treatment: a systematic review and meta-analysis. _Osteoporos Int._


7, 407 (2017). Google Scholar  * Schiller, P. C., D'Ippolito, G., Balkan, W., Roos, B. A. & Howard, G. A. Gap-junctional communication mediates parathyroid hormone stimulation of


mineralization in osteoblastic cultures. _Bone_ 28, 38–44 (2001). Article  CAS  PubMed  Google Scholar  * Plotkin, L. I. _ et al_. Connexin 43 is required for the anti-apoptotic effect of


bisphosphonates on osteocytes and osteoblasts _in vivo_. _J. Bone Miner. Res._ 23, 1712–1721 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Loiselle, A. E. _ et al_.


Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. _Tissue Eng. Part A_ 19, 1704–1712 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Lloyd, S. A., Loiselle, A. E., Zhang, Y. & Donahue, H. J. Shifting paradigms on the role of connexin 43 in the skeletal response to mechanical load. _J.


Bone Miner. Res._ 29, 275–286 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Malemud, C. J. Biologic basis of osteoarthritis: state of the evidence. _Curr. Opin. Rheumatol_


27, 289–294 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goldring, M. B. & Goldring, S. R. Osteoarthritis. _J. Cell. Physiol._ 213, 626–634 (2007). Article  CAS 


PubMed  Google Scholar  * arcOGEN Consortium _ et al_. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. _Lancet_ 380, 815–823 (2012).


* Hellio Le Graverand, M. P. _ et al_. The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. _J. Anat._ 198, 525–535 (2001).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Miyamoto, Y. _ et al_. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. _Nat.


Genet._ 39, 529–533 (2007). Article  CAS  PubMed  Google Scholar  * Chapman, K. _ et al_. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5′


UTR of GDF5 with osteoarthritis susceptibility. _Hum. Mol. Genet._ 17, 1497–1504 (2008). Article  CAS  PubMed  Google Scholar  * Chatterjee, B. _ et al_. BMP regulation of the mouse connexin


43 promoter in osteoblastic cells and embryos. _Cell Commun. Adhes._ 10, 37–50 (2003). Article  CAS  PubMed  Google Scholar  * Coleman, C. M., Loredo, G. A., Lo, C. W. & Tuan, R. S.


Correlation of GDF5 and connexin 43 mRNA expression during embryonic development. _Anat. Rec. A Discov. Mol. Cell Evol. Biol._ 275, 1117–1121 (2003). Article  CAS  PubMed  Google Scholar  *


Marino, A. A. _ et al_. Increased intercellular communication through gap junctions may contribute to progression of osteoarthritis. _Clin. Orthop. Relat. Res._ 422, 224–232 (2004). Article


  Google Scholar  * Giepmans, B. N. G. Role of connexin 43-interacting proteins at gap junctions. _Adv. Cardiol._ 42, 41–56 (2006). Article  CAS  PubMed  Google Scholar  * Giepmans, B. N. _


et al_. Gap junction protein connexin-43 interacts directly with microtubules. _Curr. Biol._ 11, 1364–1368 (2001). Article  CAS  PubMed  Google Scholar  * Moorby, C. & Patel, M. Dual


functions for connexins: Cx43 regulates growth independently of gap junction formation. _Exp. Cell Res._ 271, 238–248 (2001). Article  CAS  PubMed  Google Scholar  * Gago-Fuentes, R. _ et


al_. The C-terminal domain of connexin 43 modulates cartilage structure via chondrocyte phenotypic changes. _Oncotarget_ 7, 73055–73067 (2016). Article  PubMed  PubMed Central  Google


Scholar  * Gago-Fuentes, R. _ et al_. Proteomic analysis of connexin 43 reveals novel interactors related to osteoarthritis. _Mol. Cell. Proteom._ 14, 1831–1845 (2015). Article  CAS  Google


Scholar  * Homandberg, G. A., Meyers, R. & Williams, J. M. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans _in vivo_. _J. Rheumatol._


20, 1378–1382 (1993). CAS  PubMed  Google Scholar  * Homandberg, G. A. & Hui, F. Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage


cultured with fibronectin fragments. _Arch. Biochem. Biophys._ 334, 325–331 (1996). Article  CAS  PubMed  Google Scholar  * Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B.


& Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. _Ann. Rheum. Dis._ 64, 1263–1267 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bondeson,


J. Are we moving in the right direction with osteoarthritis drug discovery? _Expert Opin. Ther. Targets_ 15, 1355–1368 (2011). Article  CAS  PubMed  Google Scholar  * Kolomytkin, O. V. _ et


al_. IL-1β-induced production of metalloproteinases by synovial cells depends on gap junction conductance. _Am. J. Physiol. Cell Physiol._ 282, C1254–C1260 (2002). Article  CAS  PubMed 


Google Scholar  * Tonon, R. & D'Andrea, P. Interleukin-1β increases the functional expression of connexin 43 in articular chondrocytes: evidence for a Ca2+-dependent mechanism. _J.


Bone Miner. Res._ 15, 1669–1677 (2000). Article  CAS  PubMed  Google Scholar  * Tonon, R. & D'Andrea, P. The functional expression of connexin 43 in articular chondrocytes is


increased by interleukin 1ß: evidence for a Ca2+-dependent mechanism. _Biorheology_ 39, 153–160 (2002). CAS  PubMed  Google Scholar  * Gupta, A. _ et al_. Connexin 43 enhances the expression


of osteoarthritis-associated genes in synovial fibroblasts in culture. _BMC Musculoskelet Disord._ 15, 425 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsuchida, S. _ et


al_. Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. _J. Orthop. Res._ 31, 525–530 (2013). Article  CAS  PubMed  Google


Scholar  * Grek, C. L., Rhett, J. M. & Ghatnekar, G. S. Cardiac to cancer: Connecting connexins to clinical opportunity. _FEBS Lett._ 588, 1349–1364 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Baklaushev, V. P. _ et al_. Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1. _Drug Delivery_ 22,


276–285 (2014). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The work of the authors is supported by grants from the NIH, National Institute of Arthritis and


Musculoskeletal and Skin Diseases, R01AR068132-17 (to H.J.D.), R01AR 064255–05 (to D.C.G.) and a Virginia Commonwealth University School of Engineering Foundation Endowment (to H.J.D.).


AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, 23284, Virginia, USA Henry J. Donahue *


Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, 95616, California, USA Roy W. Qu & Damian


C. Genetos Authors * Henry J. Donahue View author publications You can also search for this author inPubMed Google Scholar * Roy W. Qu View author publications You can also search for this


author inPubMed Google Scholar * Damian C. Genetos View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors researched the data for the


article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission. CORRESPONDING AUTHOR Correspondence


to Henry J. Donahue. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2


POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 GLOSSARY * Cre-lox recombination A site-specific recombinase technology that is used to produce deletions, insertions, translocations


and inversions at specific sites in the DNA of cells. * Anabolic loading Mechanical loading that increases the abundance of bone. * Pannexin channels A family of vertebrate proteins that


predominantly exist as large transmembrane channels connecting the intracellular and extracellular space. * Chondron pellets Groups of chondrocytes and their adjacent pericellular


environment that have been centrifuged to form dense pellets. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Donahue, H., Qu, R. & Genetos, D. Joint


diseases: from connexins to gap junctions. _Nat Rev Rheumatol_ 14, 42–51 (2018). https://doi.org/10.1038/nrrheum.2017.204 Download citation * Published: 19 December 2017 * Issue Date:


January 2018 * DOI: https://doi.org/10.1038/nrrheum.2017.204 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative