Risk stratification in prostate cancer screening

Risk stratification in prostate cancer screening

Play all audios:

Loading...

ABSTRACT Screening for prostate cancer is a controversial topic within the field of urology. The US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial did not demonstrate any


difference in prostate-cancer-related mortality rates between men screened annually rather than on an 'opportunistic' basis. However, in the world's largest trial to date—the


European Randomised Study of Screening for Prostate Cancer—screening every 2–4 years was associated with a 21% reduction in prostate-cancer-related mortality rate after 11 years. Citing the


uncertain ratio between potential harm and potential benefit, the US Preventive Services Task Force recently recommended against serum PSA screening. Although this ratio has yet to be


elucidated, PSA testing—and early tumour detection—is undoubtedly beneficial for some individuals. Instead of adopting a 'one size fits all' approach, physicians are likely to


perform personalized risk assessment to minimize the risk of negative consequences, such as anxiety, unnecessary testing and biopsies, overdiagnosis, and overtreatment. The PSA test needs to


be combined with other predictive factors or be used in a more thoughtful way to identify men at risk of symptomatic or life-threatening cancer, without overdiagnosing indolent disease. A


risk-adapted approach is needed, whereby PSA testing is tailored to individual risk. KEY POINTS * Data regarding the potential effect of PSA-based screening on disease-specific mortality


rates are promising, but not yet sufficient to support definite conclusions * Screening for prostate cancer should focus on the detection of high-risk and potentially life-threatening


disease * Prostate cancer screening guidelines vary between different countries, medical organizations, and guideline groups; however, there is general agreement that screening should be


preceded by a discussion about risks and benefits * Elevated PSA and abnormal digital rectal examination (DRE)—routine tests in prostate cancer screening—demonstrate poor performance


characteristics; carefully selected combinations of other currently available tests could improve diagnostic accuracy * Multivariate risk prediction tools outperform PSA testing and DRE in


terms of predicting biopsy outcome; however, most of these tools lack calibration and external validation * Individualized screening is perhaps the most ethical approach to screening, but


requires both physicians and patients to be adequately well informed Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SERUM PSA-BASED EARLY DETECTION OF PROSTATE CANCER IN EUROPE AND GLOBALLY:


PAST, PRESENT AND FUTURE Article 16 August 2022 RISK CALCULATORS FOR THE DETECTION OF PROSTATE CANCER: A SYSTEMATIC REVIEW Article 03 June 2024 RETHINKING PROSTATE CANCER SCREENING: COULD


MRI BE AN ALTERNATIVE SCREENING TEST? Article 21 July 2020 CHANGE HISTORY * _ 23 APRIL 2013 In the version of this article initially published online and in print, descriptions of intact


free PSA and nicked PSA are incorrect. The error has been corrected for the HTML and PDF versions of the article. _ REFERENCES * Esserman, L., Shieh, Y. & Thompson, I. Rethinking


screening for breast cancer and prostate cancer. _JAMA_ 302, 1685–1692 (2009). Article  CAS  PubMed  Google Scholar  * Stamey, T. A. _ et al_. Prostate-specific antigen as a serum marker for


adenocarcinoma of the prostate. _N. Engl. J. Med._ 317, 909–916 (1987). Article  CAS  PubMed  Google Scholar  * Catalona, W. J. _ et al_. Measurement of prostate-specific antigen in serum


as a screening test for prostate cancer. _N. Engl. J. Med._ 324, 1156–1161 (1991). Article  CAS  PubMed  Google Scholar  * Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012.


_CA Cancer J. Clin._ 62, 10–29 (2012). Article  PubMed  Google Scholar  * Bray, F., Lortet-Tieulent, J., Ferlay, J., Forman, D. & Auvinen, A. Prostate cancer incidence and mortality


trends in 37 European countries: an overview. _Eur. J. Cancer_ 46, 3040–3052 (2010). Article  CAS  PubMed  Google Scholar  * Zhu, X. _ et al_. Risk-based prostate cancer screening. _Eur.


Urol._ 61, 652–661 (2011). Article  PubMed  PubMed Central  Google Scholar  * Sakr, W. A. _ et al_. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma


between the ages of 20–69: an autopsy study of 249 cases. _In Vivo_ 8, 439–443 (1994). CAS  PubMed  Google Scholar  * Cooperberg, M. R., Broering, J. M., Kantoff, P. W. & Carroll, P. R.


Contemporary trends in low risk prostate cancer: risk assessment and treatment. _J. Urol._ 178, S14–S19 (2007). Article  PubMed  PubMed Central  Google Scholar  * Drazer, M. W., Huo, D.,


Schonberg, M. A., Razmaria, A. & Eggener, S. E. Population-based patterns and predictors of prostate-specific antigen screening among older men in the United States. _J. Clin. Oncol._


29, 1736–1743 (2011). Article  PubMed  PubMed Central  Google Scholar  * Gomella, L. G. _ et al_. Screening for prostate cancer: the current evidence and guidelines controversy. _Can. J.


Urol._ 18, 5875–5883 (2011). PubMed  Google Scholar  * Bechis, S. K., Carroll, P. R. & Cooperberg, M. R. Impact of age at diagnosis on prostate cancer treatment and survival. _J. Clin.


Oncol._ 29, 235–241 (2011). Article  PubMed  Google Scholar  * Chou, R. _ et al_. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. _Ann.


Intern. Med._ 155, 762–771 (2011). Article  PubMed  Google Scholar  * Moyer, V. A. Screening for prostate cancer: U. S. Preventive Services Task Force recommendation statement. _Ann. Intern.


Med._ 149, 185–191 (2012). Google Scholar  * Carlsson, S. _ et al_. Prostate cancer screening: facts, statistics, and interpretation in response to the US Preventive Services Task Force


Review. _J. Clin. Oncol._ 30, 2581–2584 (2012). Article  PubMed  PubMed Central  Google Scholar  * McNaughton-Collins, M. F. & Barry, M. J. One man at a time—resolving the PSA


controversy. _N. Engl. J. Med._ 365, 1951–1953 (2011). Article  CAS  PubMed  Google Scholar  * Schroder, F. H. Stratifying risk-—the U. S. Preventive Services Task Force and prostate-cancer


screening. _N. Engl. J. Med._ 365, 1953–1955 (2011). Article  PubMed  Google Scholar  * Andriole, G. L. _ et al_. Mortality results from a randomized prostate-cancer screening trial. _N.


Engl. J. Med._ 360, 1310–1319 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Andriole, G. L. _ et al_. Prostate cancer screening in the randomized Prostate, Lung,


Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. _J. Natl Cancer Inst._ 104, 125–132 (2012). Article  PubMed  PubMed Central  Google Scholar  *


Schroder, F. H. _ et al_. Screening and prostate-cancer mortality in a randomized European study. _N. Engl. J. Med._ 360, 1320–1328 (2009). Article  PubMed  Google Scholar  * Hugosson, J. _


et al_. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. _Lancet Oncol._ 11, 725–732 (2010). Article  PubMed  PubMed Central  Google Scholar 


* Labrie, F. _ et al_. Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. _Prostate_ 59, 311–318 (2004). Article 


PubMed  Google Scholar  * Kjellman, A., Akre, O., Norming, U., Tornblom, M. & Gustafsson, O. 15-year followup of a population based prostate cancer screening study. _J. Urol._ 181,


1615–1621 (2009). Article  PubMed  Google Scholar  * Sandblom, G., Varenhorst, E., Rosell, J., Lofman, O. & Carlsson, P. Randomised prostate cancer screening trial: 20 year follow-up.


_BMJ_ 342, d1539 (2011). Article  PubMed  PubMed Central  Google Scholar  * Schroder, F. H. _ et al_. Prostate-cancer mortality at 11 years of follow-up. _N. Engl. J. Med._ 366, 981–990


(2012). Article  PubMed  PubMed Central  Google Scholar  * Vickers, A. J. _ et al_. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer:


case-control study. _BMJ_ 341, c4521 (2010). Article  PubMed  PubMed Central  Google Scholar  * Roobol, M. J., Roobol, D. W. & Schroder, F. H. Is additional testing necessary in men with


prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). _Urology_ 65, 343–346 (2005). Article  PubMed  Google Scholar  *


Loeb, S. _ et al_. What is the true number needed to screen and treat to save a life with prostate-specific antigen testing? _J. Clin. Oncol._ 29, 464–467 (2011). Article  PubMed  Google


Scholar  * Gulati, R., Mariotto, A. B., Chen, S., Gore, J. L. & Etzioni, R. Long-term projections of the harm-benefit trade-off in prostate cancer screening are more favorable than


previous short-term estimates. _J. Clin. Epidemiol._ 64, 1412–1417 (2011). Article  PubMed  PubMed Central  Google Scholar  * Greene, K. L. _ et al_. Prostate specific antigen best practice


statement: 2009 update. _J. Urol._ 182, 2232–2241 (2009). Article  CAS  PubMed  Google Scholar  * Thompson, I. M. _ et al_. Prevalence of prostate cancer among men with a prostate-specific


antigen level < or =4.0 ng per milliliter. _N. Engl. J. Med._ 350, 2239–2246 (2004). Article  CAS  PubMed  Google Scholar  * Cooner, W. H. _ et al_. Prostate cancer detection in a


clinical urological practice by ultrasonography, digital rectal examination and prostate specific antigen. _J. Urol._ 143, 1146–1154 (1990). Article  CAS  PubMed  Google Scholar  * Richie,


J. P. _ et al_. Effect of patient age on early detection of prostate cancer with serum prostate-specific antigen and digital rectal examination. _Urology_ 42, 365–374 (1993). Article  PubMed


  Google Scholar  * Gosselaar, C., Roobol, M. J., Roemeling, S. & Schroder, F. H. The role of the digital rectal examination in subsequent screening visits in the European Randomized


Study of Screening for Prostate Cancer (ERSPC), Rotterdam. _Eur. Urol._ 54, 581–588 (2008). Article  PubMed  Google Scholar  * Catalona, W. J. _ et al_. Comparison of digital rectal


examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. _J. Urol._ 151, 1283–1290 (1994). Article 


PubMed  Google Scholar  * Schroder, F. H. _ et al_. Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study


of Screening for Prostate Cancer. _J. Natl Cancer Inst._ 90, 1817–1823 (1998). Article  CAS  PubMed  Google Scholar  * Yamamoto, T. _ et al_. Diagnostic significance of digital rectal


examination and transrectal ultrasonography in men with prostate-specific antigen levels of 4 NG/ML or less. _Urology_ 58, 994–998 (2001). Article  CAS  PubMed  Google Scholar  * Bozeman, C.


B., Carver, B. S., Caldito, G., Venable, D. D. & Eastham, J. A. Prostate cancer in patients with an abnormal digital rectal examination and serum prostate-specific antigen less than 4.0


ng/mL. _Urology_ 66, 803–807 (2005). Article  PubMed  Google Scholar  * Andriole, G. L. _ et al_. Prostate cancer screening in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer


Screening Trial: findings from the initial screening round of a randomized trial. _J. Natl Cancer Inst._ 97, 433–438 (2005). Article  PubMed  Google Scholar  * van Leeuwen, P. J., van Vugt,


H. A. & Bangma, C. H. The implementation of screening for prostate cancer. _Prostate Cancer Prostatic Dis._ 13, 218–227 (2010). Article  CAS  PubMed  Google Scholar  * Heidenreich, A. _


et al_. European Association of Urology. _EAU Guidelines on prostate cancer_ [online], (2010). * Catalona, W. J., Smith, D. S. & Ornstein, D. K. Prostate cancer detection in men with


serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. _JAMA_ 277, 1452–1455 (1997). Article  CAS  PubMed 


Google Scholar  * Krumholtz, J. S. _ et al_. Prostate-specific antigen cutoff of 2.6 ng/mL for prostate cancer screening is associated with favorable pathologic tumor features. _Urology_ 60,


469–474 (2002). Article  PubMed  Google Scholar  * Schroder, F. H. _ et al_. The story of the European Randomized Study of Screening for Prostate Cancer. _BJU Int._ 92 (Suppl. 2), 1–13


(2003). Article  PubMed  Google Scholar  * Botchorishvili, G., Matikainen, M. P. & Lilja, H. Early prostate-specific antigen changes and the diagnosis and prognosis of prostate cancer.


_Curr. Opin. Urol._ 19, 221–226 (2009). Article  PubMed  PubMed Central  Google Scholar  * Postma, R. _ et al_. Cancer detection and cancer characteristics in the European Randomized Study


of Screening for Prostate Cancer (ERSPC)-Section Rotterdam. A comparison of two rounds of screening. _Eur. Urol._ 52, 89–97 (2007). Article  PubMed  Google Scholar  * Nam, R. K. _ et al_.


Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. _J. Urol._ 183, 963–968 (2010). Article  PubMed  Google Scholar  * Loeb,


S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Complications after prostate biopsy: data from SEER-Medicare. _J. Urol._ 186, 1830–1834 (2011). Article  PubMed  Google


Scholar  * Loeb, S. _ et al_. Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. _Eur. Urol._ 61, 1110–1114 (2012). Article  PubMed 


Google Scholar  * Draisma, G. _ et al_. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. _J. Natl Cancer Inst._ 101, 374–383 (2009).


Article  PubMed  PubMed Central  Google Scholar  * Etzioni, R. _ et al_. Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. _J.


Natl Cancer Inst._ 94, 981–990 (2002). Article  PubMed  Google Scholar  * Vickers, A. J., Roobol, M. J. & Lilja, H. Screening for prostate cancer: early detection or overdetection?


_Annu. Rev. Med._ 63, 161–170 (2012). Article  CAS  PubMed  Google Scholar  * Albertsen, P. C. _ et al_. Impact of comorbidity on survival among men with localized prostate cancer. _J. Clin.


Oncol._ 29, 1335–1341 (2011). Article  PubMed  PubMed Central  Google Scholar  * Shariat, S. F. _ et al_. Tumor markers in prostate cancer I: blood-based markers. _Acta Oncol._ 50 (Suppl.


1), 61–75 (2011). Article  PubMed  PubMed Central  Google Scholar  * Antenor, J. A., Han, M., Roehl, K. A., Nadler, R. B. & Catalona, W. J. Relationship between initial prostate specific


antigen level and subsequent prostate cancer detection in a longitudinal screening study. _J. Urol._ 172, 90–93 (2004). Article  PubMed  Google Scholar  * Loeb, S., Carter, H. B., Catalona,


W. J., Moul, J. W. & Schroder, F. H. Baseline prostate-specific antigen testing at a young age. _Eur. Urol._ 61, 1–7 (2011). Article  PubMed  Google Scholar  * Lilja, H. _ et al_.


Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. _J. Clin. Oncol._ 25, 431–436 (2007).


Article  CAS  PubMed  Google Scholar  * Vickers, A. J. _ et al_. The predictive value of prostate cancer biomarkers depends on age and time to diagnosis: towards a biologically-based


screening strategy. _Int. J. Cancer_ 121, 2212–2217 (2007). Article  CAS  PubMed  Google Scholar  * Aus, G. _ et al_. Individualized screening interval for prostate cancer based on


prostate-specific antigen level: results of a prospective, randomized, population-based study. _Arch. Intern. Med._ 165, 1857–1861 (2005). Article  PubMed  PubMed Central  Google Scholar  *


Schroder, F. H., Roobol, M. J., Andriole, G. L. & Fleshner, N. Defining increased future risk for prostate cancer: evidence from a population based screening cohort. _J. Urol._ 181,


69–74 (2009). Article  PubMed  Google Scholar  * Bul, M., van Leeuwen, P. J., Zhu, X., Schroder, F. H. & Roobol, M. J. Prostate cancer incidence and disease-specific survival of men with


initial prostate-specific antigen less than 3.0 ng/ml who are participating in ERSPC Rotterdam. _Eur. Urol._ 59, 498–505 (2011). Article  PubMed  Google Scholar  * Underwood, D. J., Zhang,


J., Denton, B. T., Shah, N. D. & Inman, B. A. Simulation optimization of PSA-threshold based prostate cancer screening policies. _Health Care Manag. Sci._ 15, 293–309 (2012). Article 


PubMed  PubMed Central  Google Scholar  * Lu-Yao, G. L. _ et al_. Outcomes of localized prostate cancer following conservative management. _JAMA_ 302, 1202–1209 (2009). Article  CAS  PubMed


  PubMed Central  Google Scholar  * van Leeuwen, P. J. _ et al_. Towards an optimal interval for prostate cancer screening. _Eur. Urol._ 61, 171–176 (2012). Article  PubMed  Google Scholar 


* Roobol, M. J., Grenabo, A., Schroder, F. H. & Hugosson, J. Interval cancers in prostate cancer screening: comparing 2- and 4-year screening intervals in the European Randomized Study


of Screening for Prostate Cancer, Gothenburg and Rotterdam. _J. Natl Cancer Inst._ 99, 1296–1303 (2007). Article  PubMed  Google Scholar  * Wu, G. H. _ et al_. The impact of interscreening


interval and age on prostate cancer screening with prostate-specific antigen. _Eur. Urol._ 61, 1101–1108 (2012). Article  Google Scholar  * Heijnsdijk, E. A. _ et al_. Quality-of-life


effects of prostate-specific antigen screening. _N. Engl. J. Med._ 367, 595–605 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Etzioni, R., Cha, R. & Cowen, M. E. Serial


prostate specific antigen screening for prostate cancer: a computer model evaluates competing strategies. _J. Urol._ 162, 741–748 (1999). Article  CAS  PubMed  Google Scholar  * Gulati, R.,


Inoue, L., Katcher, J., Hazelton, W. & Etzioni, R. Calibrating disease progression models using population data: a critical precursor to policy development in cancer control.


_Biostatistics_ 11, 707–719 (2010). Article  PubMed  PubMed Central  Google Scholar  * Ross, K. S., Carter, H. B., Pearson, J. D. & Guess, H. A. Comparative efficiency of


prostate-specific antigen screening strategies for prostate cancer detection. _JAMA_ 284, 1399–1405 (2000). Article  CAS  PubMed  Google Scholar  * Abrahamsson, P. A., Lilja, H. &


Oesterling, J. E. Molecular forms of serum prostate-specific antigen. The clinical value of percent free prostate-specific antigen. _Urol. Clin. North Am._ 24, 353–365 (1997). Article  CAS 


PubMed  Google Scholar  * Catalona, W. J. _ et al_. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. _JAMA_ 274,


1214–1220 (1995). Article  CAS  PubMed  Google Scholar  * Bangma, C. H. _ et al_. On the use of prostate-specific antigen for screening of prostate cancer in European Randomised Study for


Screening of Prostate Cancer. _Eur. J. Cancer_ 46, 3109–3119 (2010). Article  PubMed  Google Scholar  * Finne, P. _ et al_. Diagnostic value of free prostate-specific antigen among men with


a prostate-specific antigen level of <3.0 μg per liter. _Eur. Urol._ 54, 362–370 (2008). Article  CAS  PubMed  Google Scholar  * Brawer, M. K. Assays for complexed prostate-specific


antigen and other advances in the diagnosis of prostate cancer. _Rev. Urol._ 5 (Suppl. 6), S10–S16 (2003). PubMed  PubMed Central  Google Scholar  * Vickers, A. J. _ et al_. Impact of recent


screening on predicting the outcome of prostate cancer biopsy in men with elevated prostate-specific antigen: data from the European Randomized Study of Prostate Cancer Screening in


Gothenburg, Sweden. _Cancer_ 116, 2612–2620 (2010). PubMed  Google Scholar  * Vickers, A. _ et al_. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein


panel: an independent replication. _J. Clin. Oncol._ 28, 2493–2498 (2010). Article  PubMed  PubMed Central  Google Scholar  * Recker, F. _ et al_. Human glandular kallikrein as a tool to


improve discrimination of poorly differentiated and non-organ-confined prostate cancer compared with prostate-specific antigen. _Urology_ 55, 481–485 (2000). Article  CAS  PubMed  Google


Scholar  * Benchikh, A. _ et al_. A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: an independent validation study from the European


Randomized Study of Prostate Cancer screening, France. _BMC Cancer_ 10, 635 (2010). Article  PubMed  PubMed Central  Google Scholar  * Catalona, W. J. _ et al_. [-2]ProPSA in combination


with PSA and free-PSA, using the Beckman Coulter access immunoassay systems improves prostate cancer detection relative to PSA and free-PSA. A multi-center prospective clinical study. _J.


Urol._ 183, e717 (2010). Article  Google Scholar  * Catalona, W. J. _ et al_. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free


prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. _J. Urol._ 185, 1650–1655 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Roobol, M. J. Prostate cancer biomarkers to improve risk stratification: is our knowledge of prostate cancer sufficient to spare prostate biopsies safely? _Eur. Urol._ 60,


223–230 (2011). Article  PubMed  Google Scholar  * Haese, A. _ et al_. Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced


prostate cancer in total PSA-levels below 10 ng/ml. _Prostate_ 49, 101–109 (2001). Article  CAS  PubMed  Google Scholar  * Vickers, A. J., Till, C., Tangen, C. M., Lilja, H. & Thompson,


I. M. An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer detection. _J. Natl Cancer Inst._ 103, 462–469 (2011). Article  PubMed  PubMed Central 


Google Scholar  * Thompson, I. M. _ et al_. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. _J. Natl Cancer Inst._ 98, 529–534 (2006). Article  PubMed 


Google Scholar  * Roobol, M. J., Schroder, F. H. & Kranse, R. A comparison of first and repeat (four years later) prostate cancer screening in a randomized cohort of symptomatic men aged


55–75 years using a biopsy indication of 3.0 ng/ml (results of ERSPC, Rotterdam). _Prostate_ 66, 604–612 (2006). Article  PubMed  Google Scholar  * Roobol, M. J., Haese, A. & Bjartell,


A. Tumour markers in prostate cancer III: biomarkers in urine. _Acta Oncol._ 50 (Suppl. 1), 85–89 (2011). Article  CAS  PubMed  Google Scholar  * Van Neste, L. _ et al_. The epigenetic


promise for prostate cancer diagnosis. _Prostate_ 72, 1248–1261 (2011). Article  CAS  PubMed  Google Scholar  * Bussemakers, M. J. _ et al_. DD3: a new prostate-specific gene, highly


overexpressed in prostate cancer. _Cancer Res._ 59, 5975–5979 (1999). CAS  PubMed  Google Scholar  * Groskopf, J. _ et al_. APTIMA PCA3 molecular urine test: development of a method to aid


in the diagnosis of prostate cancer. _Clin. Chem._ 52, 1089–1095 (2006). Article  CAS  PubMed  Google Scholar  * Ruiz-Aragon, J. & Marquez-Pelaez, S. Assessment of the PCA3 test for


prostate cancer diagnosis: a systematic review and meta-analysis. _Actas Urol. Esp._ 34, 346–355 (2010). Article  CAS  PubMed  Google Scholar  * Roobol, M. J. _ et al_. Performance of the


prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. _Eur. Urol._ 58, 475–481 (2010). Article


  CAS  PubMed  Google Scholar  * Tomlins, S. A. _ et al_. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. _Sci. Transl. Med._ 3, 94ra72


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, J. & Davis, J. W. Prostate cancer screening--time to abandon one-size-fits-all approach? _JAMA_ 306, 2717–2718


(2011). Article  CAS  PubMed  Google Scholar  * Ewing, C. M. _ et al_. Germline mutations in HOXB13 and prostate-cancer risk. _N. Engl. J. Med._ 366, 141–149 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Lee, W. H. _ et al_. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic


carcinogenesis. _Proc. Natl Acad. Sci. USA_ 91, 11733–11737 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, T. _ et al_. Measurement of GSTP1 promoter methylation in body


fluids may complement PSA screening: a meta-analysis. _Br. J. Cancer_ 105, 65–73 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Trock, B. J. _ et al_. Evaluation of GSTP1


and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. _BJU Int._ 110, 56–62 (2012). Article  CAS  PubMed  Google Scholar 


* Yoon, H. Y. _ et al_. Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: quantitative pyrosequencing analysis. _J. Biomol. Screen_ 72, 1248–1261 (2012).


Google Scholar  * Varghese, J. S. & Easton, D. F. Genome-wide association studies in common cancers-what have we learnt? _Curr. Opin. Genet. Dev._ 20, 201–209 (2010). Article  CAS 


PubMed  Google Scholar  * Liu, H., Wang, B. & Han, C. Meta-analysis of genome-wide and replication association studies on prostate cancer. _Prostate_ 71, 209–224 (2011). Article  PubMed


  Google Scholar  * Aly, M., Wiklund, F. & Gronberg, H. Early detection of prostate cancer with emphasis on genetic markers. _Acta Oncol._ 50 (Suppl. 1), 18–23 (2011). Article  CAS 


PubMed  Google Scholar  * Lin, D. W. _ et al_. Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality. _Cancer


Epidemiol. Biomarkers Prev._ 20, 1928–1936 (2011) Article  CAS  PubMed  PubMed Central  Google Scholar  * Ahmed, H. U. _ et al_. Is it time to consider a role for MRI before prostate biopsy?


_Nat. Rev. Clin. Oncol._ 6, 197–206 (2009). Article  PubMed  Google Scholar  * Haffner, J. _ et al_. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic


resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. _BJU Int._ 108, E171–E178 (2011). Article  PubMed  Google Scholar  * Moore, C. M. _ et al_.


Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. _Eur. Urol._ http://dx.doi.org/10.1016/j.eururo.2012.06.004. * Shariat, S. F., Kattan, M.


W., Vickers, A. J., Karakiewicz, P. I. & Scardino, P. T. Critical review of prostate cancer predictive tools. _Future Oncol._ 5, 1555–1584 (2009). Article  PubMed  Google Scholar  *


Shariat, S. F., Karakiewicz, P. I., Suardi, N. & Kattan, M. W. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the


literature. _Clin. Cancer Res._ 14, 4400–4407 (2008). Article  CAS  PubMed  Google Scholar  * Schroder, F. & Kattan, M. W. The comparability of models for predicting the risk of a


positive prostate biopsy with prostate-specific antigen alone: a systematic review. _Eur. Urol._ 54, 274–290 (2008). Article  PubMed  Google Scholar  * Vickers, A. J. _ et al_. The


relationship between prostate-specific antigen and prostate cancer risk: the Prostate Biopsy Collaborative Group. _Clin. Cancer Res._ 16, 4374–4381 (2010). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Ankerst, D. P. _ et al_. Evaluating the PCPT risk calculator in ten international biopsy cohorts: results from the Prostate Biopsy Collaborative Group. _World J.


Urol._ 30, 181–187 (2011). Article  PubMed  PubMed Central  Google Scholar  * Jansen, F. H., Roobol, M., Bangma, C. H. & van Schaik, R. H. Clinical impact of new prostate-specific


antigen WHO standardization on biopsy rates and cancer detection. _Clin. Chem._ 54, 1999–2006 (2008). Article  CAS  PubMed  Google Scholar  * van Vugt, H. A. _ et al_. Compliance with biopsy


recommendations of a prostate cancer risk calculator. _BJU Int._ 109, 1480–1488 (2012). Article  PubMed  Google Scholar  * Roobol, M. J. _ et al_. A risk-based strategy improves


prostate-specific antigen-driven detection of prostate cancer. _Eur. Urol._ 57, 79–85 (2010). Article  PubMed  Google Scholar  * Bul, M. & Schroder, F. H. Screening for prostate


cancer---the controversy continues, but can it be resolved? _Acta Oncol._ 50 (Suppl. 1), 4–11 (2011). Article  PubMed  Google Scholar  * Roobol, M. J. _ et al_. Importance of prostate volume


in the European Randomised Study of Screening for Prostate Cancer (ERSPC) risk calculators: results from the prostate biopsy collaborative group. _World J. Urol._ 30, 149–155 (2012).


Article  PubMed  Google Scholar  * Roobol, M. J. _ et al_. Prediction of prostate cancer risk: the role of prostate volume and digital rectal examination in the ERSPC risk calculators. _Eur.


Urol._ 61, 577–583 (2012). Article  PubMed  Google Scholar  * Perdona, S. _ et al_. Prostate cancer detection in the “grey area” of prostate-specific antigen below 10 ng/ml: head-to-head


comparison of the updated PCPT calculator and Chun's nomogram, two risk estimators incorporating prostate cancer antigen 3. _Eur. Urol._ 59, 81–87 (2011). Article  PubMed  Google


Scholar  * Ankerst, D. P. _ et al_. Updating risk prediction tools: a case study in prostate cancer. _Biom J._ 54, 127–142 (2012). Article  PubMed  Google Scholar  * Ankerst, D. P. _ et al_.


Predicting prostate cancer risk through incorporation of prostate cancer gene 3. _J. Urol._ 180, 1303–1308 (2008). Article  PubMed  Google Scholar  * Lughezzani, G. _ et al_. Development


and internal validation of a prostate health index based nomogram for predicting prostate cancer at extended biopsy. _J. Urol._ 188, 1144–1150 (2012). Article  PubMed  Google Scholar  *


Stephan, C. _ et al_. New markers and multivariate models for prostate cancer detection. _Anticancer Res._ 29, 2589–2600 (2009). CAS  PubMed  Google Scholar  * Lim, L. S. & Sherin, K.


Screening for prostate cancer in U.S. men: ACPM position statement on preventive practice. _Am. J. Prev. Med._ 34, 164–170 (2008). Article  PubMed  Google Scholar  * Wolf, A. M. _ et al_.


American Cancer Society guideline for the early detection of prostate cancer: update 2010. _CA Cancer J. Clin._ 60, 70–98 (2010). Article  PubMed  Google Scholar  * Heidenreich, A. _ et al_.


EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. _Eur. Urol._ 59, 61–71 (2011). Article  PubMed  Google Scholar  * Kawachi, M.


H. _ et al_. NCCN clinical practice guidelines in oncology: prostate cancer early detection. _J. Natl Compr. Canc. Netw._ 8, 240–262 (2010). Article  CAS  PubMed  Google Scholar  *


Schroder, F. H., Bangma, C. H. & Roobol, M. J. Is it necessary to detect all prostate cancers in men with serum PSA levels <3.0 ng/ml? A comparison of biopsy results of PCPT and


outcome-related information from ERSPC. _Eur. Urol._ 53, 901–908 (2008). Article  PubMed  Google Scholar  * Kranse, R., Roobol, M. & Schroder, F. H. A graphical device to represent the


outcomes of a logistic regression analysis. _Prostate_ 68, 1674–1680 (2008). Article  PubMed  Google Scholar  * Karakiewicz, P. I. _ et al_. Development and validation of a nomogram


predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. _J. Urol._ 173, 1930–1934 (2005). Article  PubMed  PubMed


Central  Google Scholar  * Stephan, C. _ et al_. An artificial neural network for five different assay systems of prostate-specific antigen in prostate cancer diagnostics. _BJU Int._ 102,


799–805 (2008). Article  CAS  PubMed  Google Scholar  * Nam, R. K. _ et al_. Assessing individual risk for prostate cancer. _J. Clin. Oncol._ 25, 3582–3588 (2007). Article  CAS  PubMed 


Google Scholar  * Thompson, I. M. & Ankerst, D. P. Prostate-specific antigen in the early detection of prostate cancer. _CMAJ_ 176, 1853–1858 (2007). Article  PubMed  PubMed Central 


Google Scholar  Download references ACKNOWLEDGEMENTS S. V. Carlsson is supported by funding from the Swedish Cancer Society, the Swedish Society for Medical Research, the Sweden-America


Foundation, and the Swedish Council for Working Life and Social Research. M. J. Roobol is supported by the Dutch Cancer Society and the Prostate Cancer Research Foundation Rotterdam (SWOP).


The authors would like to thank Dr Stacy Loeb for independent review of the final manuscript before submission. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Urology, Erasmus


Medical Center, Rotterdam, 3000 CA, Netherlands Monique J. Roobol * Department of Surgery (Urology Service), Memorial Sloan-Kettering Cancer Center, New York, 10065, NY, USA Sigrid V.


Carlsson Authors * Monique J. Roobol View author publications You can also search for this author inPubMed Google Scholar * Sigrid V. Carlsson View author publications You can also search


for this author inPubMed Google Scholar CONTRIBUTIONS M. J. Roobol and S. V. Carlsson contributed equally to this work and independently performed literature searches and reviews. Both


authors wrote separate draft versions of the manuscript that were subsequently merged into one. Both authors then edited the article and approved the final manuscript prior to submission.


CORRESPONDING AUTHOR Correspondence to Monique J. Roobol. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Roobol, M., Carlsson, S. Risk stratification in prostate cancer screening. _Nat Rev Urol_ 10, 38–48 (2013).


https://doi.org/10.1038/nrurol.2012.225 Download citation * Published: 18 December 2012 * Issue Date: January 2013 * DOI: https://doi.org/10.1038/nrurol.2012.225 SHARE THIS ARTICLE Anyone


you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative