Cellular plasticity and the neuroendocrine phenotype in prostate cancer

Cellular plasticity and the neuroendocrine phenotype in prostate cancer

Play all audios:

Loading...

KEY POINTS * Emerging experimental and clinical evidence posits that phenotypic plasticity — that is, the ability of cells to reversibly alter their lineage identity — drives resistance to


next-generation androgen receptor (AR) pathway inhibitors * Following treatment with AR pathway inhibitors, ∼20–25% of patients with prostate cancer relapse with tumours that have shed their


dependence on the AR and have neuroendocrine features; these cancers are termed neuroendocrine prostate cancer (NEPC) * Reprogramming to an NEPC state is linked to reactivation of


developmental transcriptional programmes involving brain-specific homeobox/POU domain protein 2 (BRN2) and transcription factor SOX2, which endow prostate cancer cells with


epithelial–mesenchymal plasticity and stem-like cell properties * NEPCs have few genomic aberrations, with the exception of _MYCN_ amplification, _TP53_ mutation or deletion, and loss of


_RB1_, suggesting that transdifferentiation is driven largely by epigenetic dysregulation and/or signals from the tumour microenvironment * Polycomb group protein-mediated epigenetic


silencing is notably altered in NEPC, predominantly owing to overexpression of the epigenetic modifier enhancer of zeste homologue 2 (EZH2) * Epigenetic therapy, such as targeting EZH2, to


block neuroendocrine differentiation and/or reverse the lineage switch and restore sensitivity to AR pathway inhibitors is a promising avenue to improve prostate cancer therapy ABSTRACT The


success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug


resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival.


Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine


characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with


epithelial–mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype


has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54


other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and


online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS THE NEUROENDOCRINE TRANSITION IN PROSTATE CANCER IS DYNAMIC AND DEPENDENT ON ASCL1 Article Open access 11 October 2024 DPYSL5 IS HIGHLY EXPRESSED IN TREATMENT-INDUCED NEUROENDOCRINE


PROSTATE CANCER AND PROMOTES LINEAGE PLASTICITY VIA EZH2/PRC2 Article Open access 18 January 2024 MOLECULAR EVENTS IN NEUROENDOCRINE PROSTATE CANCER DEVELOPMENT Article 21 July 2021


REFERENCES * Nijhout, H. F. Development and evolution of adaptive polyphenisms. _Evol. Dev._ 5, 9–18 (2003). Article  PubMed  Google Scholar  * Huggins, C. & Hodges, C. V. Studies on


prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. _CA_ _Cancer J. Clin._ 22, 232–240 (1972).


Article  CAS  Google Scholar  * Knudsen, K. E. & Scher, H. I. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. _Clin. Cancer Res._


15, 4792–4798 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor


inhibitors in prostate cancer. _Nat. Rev. Cancer_ 15, 701–711 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, C. D. _ et al_. Molecular determinants of resistance to


antiandrogen therapy. _Nat. Med._ 10, 33–39 (2004). Article  CAS  PubMed  Google Scholar  * Scher, H. I. _ et al_. Increased survival with enzalutamide in prostate cancer after chemotherapy.


_N. Engl. J. Med._ 367, 1187–1197 (2012). Article  CAS  PubMed  Google Scholar  * de Bono, J. S. _ et al_. Abiraterone and increased survival in metastatic prostate cancer. _N. Engl. J.


Med._ 364, 1995–2005 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tran, C. _ et al_. Development of a second- generation antiandrogen for treatment of advanced prostate


cancer. _Science_ 324, 787–790 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Qin, J. _ et al_. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term


tumor-propagating cells that resist castration. _Cell Stem Cell_ 10, 556–569 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Epstein, J. I. _ et al_. Proposed morphologic


classification of prostate cancer with neuroendocrine differentiation. _Am. J. Surg. Pathol._ 38, 756–767 (2014). Article  PubMed  PubMed Central  Google Scholar  * Beltran, H. _ et al_.


Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. _Cancer Discov._ 1, 487–495 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Yao, J. L. _ et al_. Small cell carcinoma of the prostate: an immunohistochemical study. _Am. J. Surg. Pathol._ 30, 705–712 (2006). Article  PubMed  Google Scholar  * Komiya, A. _ et


al_. Neuroendocrine differentiation in the progression of prostate cancer. _Int. J. Urol._ 16, 37–44 (2009). Article  PubMed  Google Scholar  * Pienta, K. J. & Bradley, D. Mechanisms


underlying the development of androgen-independent prostate cancer. _Clin. Cancer Res._ 12, 1665–1671 (2006). Article  CAS  PubMed  Google Scholar  * Visakorpi, T. _ et al_. In vivo


amplification of the androgen receptor gene and progression of human prostate cancer. _Nat. Genet._ 9, 401–406 (1995). Article  CAS  PubMed  Google Scholar  * Beltran, H. _ et al_. Targeted


next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. _Eur. Urol._ 63, 920–926 (2013). Article  CAS  PubMed  Google


Scholar  * Korpal, M. _ et al_. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). _Cancer Discov._ 3, 1030–1043 (2013). Article  CAS


  PubMed  Google Scholar  * Antonarakis, E. S. _ et al_. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. _N. Engl. J. Med._ 371, 1028–1038 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Guo, Z. _ et al_. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen


depletion-resistant growth. _Cancer Res._ 69, 2305–2313 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arora, V. K. _ et al_. Glucocorticoid receptor confers resistance to


antiandrogens by bypassing androgen receptor blockade. _Cell_ 155, 1309–1322 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Isikbay, M. _ et al_. Glucocorticoid receptor


activity contributes to resistance to androgen-targeted therapy in prostate cancer. _Hormones Cancer_ 5, 72–89 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sequist, L. V.


_ et al_. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. _Sci. Transl Med._ 3, 75ra26 (2011). Article  PubMed  PubMed Central  Google Scholar 


* Richard, G. _ et al_. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. _EMBO Mol. Med._ 8, 1143–1161 (2016). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Small, E. J. _ et al_. Clinical and genomic characterization of metastatic small cell/neuroendocrine prostate cancer (SCNC) and intermediate atypical prostate cancer (IAC):


results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT) [abstract]. _J. Clin. Oncol._ 34, (Suppl.), 5019 (2016). Article  Google Scholar  * Beltran, H. _ et al_.


Challenges in recognizing treatment-related neuroendocrine prostate cancer. _J. Clin. Oncol._ 30, e386–e389 (2012). Article  PubMed  Google Scholar  * Mu, P. _ et al_. SOX2 promotes lineage


plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. _Science_ 355, 84–88 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zou, M. _ et al_.


Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. _Cancer Discov._ https://doi.org/10.1158/2159-8290.CD-16-1174 (2017).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ku, S. Y. _ et al_. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.


_Science_ 355, 78–83 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult


fibroblast cultures by defined factors. _Cell_ 126, 663–676 (2006). CAS  PubMed  Google Scholar  * Yu, J. _ et al_. Induced pluripotent stem cell lines derived from human somatic cells.


_Science_ 318, 1917–1920 (2007). Article  CAS  PubMed  Google Scholar  * Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. _Science_ 342, 1234850 (2013).


Article  CAS  PubMed  Google Scholar  * Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. _Cell_ 139, 871–890 (2009).


Article  CAS  PubMed  Google Scholar  * Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. _Mech. Dev._ 120, 1351–1383


(2003). Article  CAS  PubMed  Google Scholar  * Hay, E. D. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. _Dev. Dynam._ 233, 706–720


(2005). Article  CAS  Google Scholar  * Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M. & Nieto, M. A. Epithelial-mesenchymal transitions: the importance of changing cell


state in development and disease. _J. Clin. Invest._ 119, 1438–1449 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nieto, M. A. The ins and outs of the epithelial to


mesenchymal transition in health and disease. _Annu. Rev. Cell Dev. Biol._ 27, 347–376 (2011). Article  CAS  PubMed  Google Scholar  * Thiery, J. P. Epithelial-mesenchymal transitions in


tumour progression. _Nat. Rev. Cancer_ 2, 442–454 (2002). Article  CAS  PubMed  Google Scholar  * Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. _J. Clin.


Invest._ 119, 1420–1428 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Graham, T. R. _ et al_. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives


epithelial-to-mesenchymal transition in human prostate cancer cells. _Cancer Res._ 68, 2479–2488 (2008). Article  CAS  PubMed  Google Scholar  * Zhang, Q. _ et al_. Nuclear


factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. _Clin. Cancer Res._


15, 3557–3567 (2009). Article  CAS  PubMed  Google Scholar  * Umbas, R. _ et al_. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer.


_Cancer Res._ 52, 5104–5109 (1992). CAS  PubMed  Google Scholar  * Cheng, L., Nagabhushan, M., Pretlow, T. P., Amini, S. B. & Pretlow, T. G. Expression of E-cadherin in primary and


metastatic prostate cancer. _Am. J. Pathol._ 148, 1375–1380 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Beltran, H. _ et al_. Divergent clonal evolution of castration-resistant


neuroendocrine prostate cancer. _Nat. Med._ 22, 298–305 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tanaka, H. _ et al_. Monoclonal antibody targeting of N-cadherin


inhibits prostate cancer growth, metastasis and castration resistance. _Nat. Med._ 16, 1414–1420 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kong, D. _ et al_. Androgen


receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. _Prostate_ 75, 161–174 (2015). Article  CAS  PubMed 


Google Scholar  * Cottard, F. _ et al_. Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. _PloS_ _ONE_ 8, e63466 (2013).


Article  CAS  Google Scholar  * Sun, F. _ et al_. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. _J. Biol. Chem._


289, 1529–1539 (2014). Article  CAS  PubMed  Google Scholar  * Njar, V. C. & Brodie, A. M. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages


of prostate cancer. _J. Med. Chem._ 58, 2077–2087 (2015). Article  CAS  PubMed  Google Scholar  * Kwegyir-Afful, A. K., Ramalingam, S., Purushottamachar, P., Ramamurthy, V. P. & Njar, V.


C. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome _c_ release and suppress growth of castration resistant prostate cancer


xenografts in vivo. _Oncotarget_ 6, 27440–27460 (2015). Article  PubMed  PubMed Central  Google Scholar  * Kwegyir-Afful, A. K., Bruno, R. D., Purushottamachar, P., Murigi, F. N. & Njar,


V. C. Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. _FEBS J._ 283, 3898–3918 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar 


* US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT02438007 (2017). * Mani, S. A. _ et al_. The epithelial-mesenchymal transition generates


cells with properties of stem cells. _Cell_ 133, 704–715 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Morel, A. P. _ et al_. Generation of breast cancer stem cells through


epithelial-mesenchymal transition. _PloS_ _ONE_ 3, e2888 (2008). Article  CAS  Google Scholar  * Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. _Cell_ 166, 21–45


(2016). Article  CAS  PubMed  Google Scholar  * Celia-Terrassa, T. _ et al_. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. _J.


Clin. Invest._ 122, 1849–1868 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bae, K. M. _ et al_. Expression of pluripotent stem cell reprogramming factors by prostate tumor


initiating cells. _J. Urol._ 183, 2045–2053 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kong, D. _ et al_. Epithelial to mesenchymal transition is mechanistically linked


with stem cell signatures in prostate cancer cells. _PloS_ _ONE_ 5, e12445 (2010). Article  CAS  Google Scholar  * Sun, Y. _ et al_. Androgen deprivation causes epithelial-mesenchymal


transition in the prostate: implications for androgen-deprivation therapy. _Cancer Res._ 72, 527–536 (2012). Article  CAS  PubMed  Google Scholar  * Klarmann, G. J. _ et al_. Invasive


prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. _Clin. Exp. Metastasis_ 26, 433–446 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Mulholland, D. J. _ et al_. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. _Cancer Res._ 72,


1878–1889 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ocana, O. H. _ et al_. Metastatic colonization requires the repression of the epithelial-mesenchymal transition


inducer Prrx1. _Cancer Cell_ 22, 709–724 (2012). Article  CAS  PubMed  Google Scholar  * Li, R. _ et al_. A mesenchymal-to-epithelial transition initiates and is required for the nuclear


reprogramming of mouse fibroblasts. _Cell Stem Cell_ 7, 51–63 (2010). Article  CAS  PubMed  Google Scholar  * Redmer, T. _ et al_. E-Cadherin is crucial for embryonic stem cell pluripotency


and can replace OCT4 during somatic cell reprogramming. _EMBO Rep._ 12, 720–726 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Battula, V. L. _ et al_.


Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. _Stem Cells_ 28, 1435–1445 (2010). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Miyamoto, D. T. _ et al_. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. _Science_ 349, 1351–1356 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is


essential for squamous cell carcinoma metastasis. _Cancer Cell_ 22, 725–736 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vega, S. _ et al_. Snail blocks the cell cycle


and confers resistance to cell death. _Genes Dev._ 18, 1131–1143 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nouri, M. _ et al_. Therapy-induced developmental


reprogramming of prostate cancer cells and acquired therapy resistance. _Oncotarget_ 8, 18949–18967 (2017). Article  PubMed  PubMed Central  Google Scholar  * Lee, S. O. _ et al_. New


therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor versus non-stem/progenitor cells. _J. Mol. Cell Biol._ 5, 14–26 (2013). Article  CAS  PubMed 


Google Scholar  * Germann, M. _ et al_. Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. _Stem Cells_ 30, 1076–1086 (2012). Article  CAS  PubMed


  Google Scholar  * Seiler, D. _ et al_. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to


androgen deprivation in LNCaP cell lines. _Prostate_ 73, 1378–1390 (2013). Article  CAS  PubMed  Google Scholar  * Yuan, T. C. _ et al_. Androgen deprivation induces human prostate


epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. _Endocr. Relat. Cancer_ 13, 151–167 (2006). Article  CAS  PubMed  Google Scholar  * Lipianskaya, J. _ et al_.


Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. _Asian J. Androl._ 16, 541–544 (2014). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Hirano, D., Okada, Y., Minei, S., Takimoto, Y. & Nemoto, N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. _Eur.


Urol._ 45, 586–592 (2004). Article  CAS  PubMed  Google Scholar  * Zhang, D. _ et al_. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate


cancer. _Nat. Commun._ 7, 10798 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smith, B. A. _ et al_. A basal stem cell signature identifies aggressive prostate cancer


phenotypes. _Proc. Natl Acad. Sci. USA_ 112, E6544–E6552 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * McKeithen, D., Graham, T., Chung, L. W. & Odero-Marah, V. Snail


transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. _Prostate_ 70, 982–992 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Akamatsu, S. _ et


al_. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. _Cell Rep._ 12, 922–936 (2015). Article  CAS  PubMed  Google Scholar  * Dardenne, E. _ et al_. N-Myc


induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. _Cancer Cell_ 30, 563–577 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hargrave,


M. _ et al_. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. _Dev. Dynam._ 210, 79–86 (1997). Article  CAS  Google


Scholar  * Plisov, S. Y. _ et al_. Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. _Genesis_ 27, 22–31 (2000). Article


  CAS  PubMed  Google Scholar  * Bishop, J. L., Thaper, D. & Zoubeidi, A. The multifaceted roles of STAT3 signaling in the progression of prostate cancer. _Cancers_ 6, 829–859 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Schroeder, A. _ et al_. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3


signaling. _Cancer Res._ 74, 1227–1237 (2014). Article  CAS  PubMed  Google Scholar  * Rojas, A. _ et al_. IL-6 promotes prostate tumorigenesis and progression through autocrine


cross-activation of IGF-IR. _Oncogene_ 30, 2345–2355 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Uysal-Onganer, P. _ et al_. Wnt-11 promotes neuroendocrine-like


differentiation, survival and migration of prostate cancer cells. _Mol. Cancer_ 9, 55 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chang, P. C. _ et al_. Autophagy pathway


is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. _PloS_ _ONE_ 9, e88556 (2014). Article  CAS  Google Scholar  * Shiota, M. _


et al_. Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. _Cancer Res._ 73, 3109–3119 (2013). Article  CAS  PubMed  Google


Scholar  * Nakashima, J. _ et al_. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. _Clin. Cancer Res._ 6, 2702–2706 (2000). CAS  PubMed  Google Scholar  * Rajan,


P. _ et al_. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. _Eur. Urol._ 66, 32–39 (2014). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Li, X. _ et al_. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. _Oncogene_ 27, 7118–7130 (2008). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Sun, Y. _ et al_. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. _Nat. Med._ 18, 1359–1368 (2012). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Bisson, I. & Prowse, D. M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell


characteristics. _Cell Res._ 19, 683–697 (2009). Article  CAS  PubMed  Google Scholar  * Yu, X., Wang, Y., DeGraff, D. J., Wills, M. L. & Matusik, R. J. Wnt/beta-catenin activation


promotes prostate tumor progression in a mouse model. _Oncogene_ 30, 1868–1879 (2011). Article  CAS  PubMed  Google Scholar  * Lee, E. _ et al_. Inhibition of androgen receptor and


beta-catenin activity in prostate cancer. _Proc. Natl Acad. Sci. USA_ 110, 15710–15715 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hao, J., Li, T. G., Qi, X., Zhao, D. F.


& Zhao, G. Q. WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. _Dev. Biol._ 290, 81–91 (2006). Article  CAS 


PubMed  Google Scholar  * Carstens, J. L. _ et al_. FGFR1-WNT-TGF-beta signaling in prostate cancer mouse models recapitulates human reactive stroma. _Cancer Res._ 74, 609–620 (2014).


Article  CAS  PubMed  Google Scholar  * Gujral, T. S. _ et al_. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. _Cell_ 159, 844–856 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate.


_Cell_ 61, 1303–1313 (1990). Article  CAS  PubMed  Google Scholar  * Shang, Z. _ et al_. A switch from CD44(+) cell to EMT cell drives the metastasis of prostate cancer. _Oncotarget_ 6,


1202–1216 (2015). PubMed  Google Scholar  * Marin-Aguilera, M. _ et al_. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. _Mol.


Cancer Ther._ 13, 1270–1284 (2014). Article  CAS  PubMed  Google Scholar  * Deep, G. _ et al_. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. _Mol.


Cancer_ 13, 37 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Palapattu, G. S. _ et al_. Selective expression of CD44, a putative prostate cancer stem cell marker, in


neuroendocrine tumor cells of human prostate cancer. _Prostate_ 69, 787–798 (2009). Article  CAS  PubMed  Google Scholar  * Salvatori, L. _ et al_. Cell-to-cell signaling influences the fate


of prostate cancer stem cells and their potential to generate more aggressive tumors. _PloS_ _ONE_ 7, e31467 (2012). Article  CAS  Google Scholar  * Sotomayor, P., Godoy, A., Smith, G. J.


& Huss, W. J. Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. _Prostate_ 69, 401–410 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Beltran, H. _


et al_. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. _Clin. Cancer Res._ 22, 1510–1519 (2016). Article  CAS  PubMed 


Google Scholar  * Tan, H. L. _ et al_. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. _Clin. Cancer Res._ 20, 890–903 (2014). Article  CAS  PubMed  Google


Scholar  * Varlakhanova, N. V. _ et al_. myc maintains embryonic stem cell pluripotency and self-renewal. _Differentiation_ 80, 9–19 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wey, A. & Knoepfler, P. S. c-Myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain. _Oncotarget_ 1, 120–130 (2010). Article 


PubMed  PubMed Central  Google Scholar  * Nakagawa, M. _ et al_. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. _Nat. Biotechnol._ 26, 101–106


(2008). Article  CAS  PubMed  Google Scholar  * Lee, J. K. _ et al_. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. _Cancer Cell_ 29, 536–547


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, Z. _ et al_. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. _Cancer Res._


66, 7889–7898 (2006). Article  CAS  PubMed  Google Scholar  * Greenberg, N. M. _ et al_. Prostate cancer in a transgenic mouse. _Proc. Natl Acad. Sci. USA_ 92, 3439–3443 (1995). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Masumori, N. _ et al_. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with


metastatic potential. _Cancer Res._ 61, 2239–2249 (2001). CAS  PubMed  Google Scholar  * Kawamura, T. _ et al_. Linking the p53 tumour suppressor pathway to somatic cell reprogramming.


_Nature_ 460, 1140–1144 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sarkar, A. & Hochedlinger, K. The sox family of transcription factors: versatile regulators of


stem and progenitor cell fate. _Cell Stem Cell_ 12, 15–30 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ferone, G. _ et al_. SOX2 is the determining oncogenic switch in


promoting lung squamous cell carcinoma from different cells of origin. _Cancer Cell_ 30, 519–532 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murai, F. _ et al_. EZH2


promotes progression of small cell lung cancer by suppressing the TGF-beta-Smad-ASCL1 pathway. _Cell Discov._ 1, 15026 (2015). Article  PubMed  PubMed Central  Google Scholar  * Lin, D. _ et


al_. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. _Cancer Res._ 74, 1272–1283 (2014). Article  CAS  PubMed  Google Scholar  *


Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. _Nat. Med._ 22, 128–134 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Varambally, S. _ et al_. The polycomb group


protein EZH2 is involved in progression of prostate cancer. _Nature_ 419, 624–629 (2002). Article  CAS  PubMed  Google Scholar  * Clermont, P. L. _ et al_. Polycomb-mediated silencing in


neuroendocrine prostate cancer. _Clin. Epigenet._ 7, 40 (2015). Article  CAS  Google Scholar  * Lapuk, A. V. _ et al_. From sequence to molecular pathology, and a mechanism driving the


neuroendocrine phenotype in prostate cancer. _J. Pathol._ 227, 286–297 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Svensson, C. _ et al_. REST mediates androgen receptor


actions on gene repression and predicts early recurrence of prostate cancer. _Nucleic Acids Res._ 42, 999–1015 (2014). Article  CAS  PubMed  Google Scholar  * Schoenherr, C. J. &


Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. _Science_ 267, 1360–1363 (1995). Article  CAS  PubMed  Google Scholar


  * Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. _Cell_ 121, 645–657


(2005). Article  CAS  PubMed  Google Scholar  * Li, Y. _ et al_. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. _Eur.


Urol._ 71, 68–78 (2017). Article  CAS  PubMed  Google Scholar  * Raj, B. _ et al_. A global regulatory mechanism for activating an exon network required for neurogenesis. _Mol. Cell_ 56,


90–103 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, X. _ et al_. SRRM4 expression and the loss of REST activity may promote the emergence of the neuroendocrine


phenotype in castration-resistant prostate cancer. _Clin. Cancer Res._ 21, 4698–4708 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bishop, J. L. _ et al_. The master neural


transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. _Cancer Discov._ 7, 54–71 (2017). Article  CAS  PubMed  Google


Scholar  * Ishii, J. _ et al_. POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer.


_Pathol. Int._ 63, 158–168 (2013). Article  CAS  PubMed  Google Scholar  * Sakaeda, M. _ et al_. Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in


small-cell lung cancer. _Lab. Invest._ 93, 408–421 (2013). Article  CAS  PubMed  Google Scholar  * Tian, C. _ et al_. Selective generation of dopaminergic precursors from mouse fibroblasts


by direct lineage conversion. _Sci. Rep._ 5, 12622 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Domanskyi, A., Alter, H., Vogt, M. A., Gass, P. & Vinnikov, I. A.


Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance. _Front. Cell. Neurosci._ 8, 275 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Chiaverotti, T. _ et al_. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. _Am. J. Pathol._ 172,


236–246 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mirosevich, J. _ et al_. Expression and role of Foxa proteins in prostate cancer. _Prostate_ 66, 1013–1028 (2006).


Article  CAS  PubMed  Google Scholar  * Qi, J. _ et al_. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate


tumors. _Cancer Cell_ 18, 23–38 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, W. J. _ et al_. Cancer-associated fibroblasts regulate the plasticity of lung cancer


stemness via paracrine signalling. _Nat. Commun._ 5, 3472 (2014). Article  CAS  PubMed  Google Scholar  * Olumi, A. F. _ et al_. Carcinoma-associated fibroblasts direct tumor progression of


initiated human prostatic epithelium. _Cancer Res._ 59, 5002–5011 (1999). CAS  PubMed  Google Scholar  * Lu, T. _ et al_. Targeting androgen receptor to suppress macrophage-induced EMT and


benign prostatic hyperplasia (BPH) development. _Mol. Endocrinol._ 26, 1707–1715 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lau, E. Y. _ et al_. Cancer-associated


fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. _Cell Rep._ 15, 1175–1189 (2016). Article  CAS  PubMed  Google Scholar  *


Ma, Y. _ et al_. Prostate cancer cell lines under hypoxia exhibit greater stem-like properties. _PloS_ _ONE_ 6, e29170 (2011). Article  CAS  Google Scholar  * Tan, Y. _ et al_. Matrix


softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. _Nat. Commun._ 5, 4619 (2014). Article  CAS  PubMed  Google Scholar  * Doldi, V. _ et


al_. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. _Oncotarget_ 6, 31441–31460


(2015). Article  PubMed  PubMed Central  Google Scholar  * Lee, G. T. _ et al_. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6-IL6 Loop. _Prostate_ 71,


1525–1537 (2011). CAS  PubMed  Google Scholar  * Li, M. _ et al_. Hypoxia inducible factor-1alpha-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer


cells. _Oncol. Rep._ 36, 521–527 (2016). Article  CAS  PubMed  Google Scholar  * Smith, P. C. & Keller, E. T. Anti-interleukin-6 monoclonal antibody induces regression of human prostate


cancer xenografts in nude mice. _Prostate_ 48, 47–53 (2001). Article  CAS  PubMed  Google Scholar  * Wallner, L. _ et al_. Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6


monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. _Cancer Res._ 66, 3087–3095 (2006). Article  CAS 


PubMed  Google Scholar  * Dorff, T. B. _ et al_. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in


chemotherapy-pretreated patients with castration-resistant prostate cancer. _Clin. Cancer Res._ 16, 3028–3034 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * US National


Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT00433446 (2013). * US National Library of Medicine. _ClinicalTrials.gov_


https://www.clinicaltrials.gov/ct2/show/NCT00401765 (2014). * Hudes, G. _ et al_. A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel


in patients with metastatic castration-resistant prostate cancer. _Invest. Drugs_ 31, 669–676 (2013). Article  CAS  Google Scholar  * Tang, Y. _ et al_. Lycopene enhances docetaxel's


effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. _Neoplasia_ 13, 108–119 (2011). Article  CAS  PubMed  PubMed Central  Google


Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT01949519 (2018). * van den Hoogen, C. _ et al_. High aldehyde dehydrogenase


activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. _Cancer Res._ 70, 5163–5173 (2010). Article  CAS  PubMed  Google Scholar  * Liu, P. _ et al_.


Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. _Br. J. Cancer_ 109, 1876–1885


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nechushtan, H. _ et al_. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of


metastatic non-small cell lung cancer. _Oncologist_ 20, 366–367 (2015). Article  PubMed  PubMed Central  Google Scholar  * Liu, X. _ et al_. Targeting ALDH1A1 by disulfiram/copper complex


inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. _Oncotarget_ 7, 58516–58530 (2016). PubMed  PubMed Central  Google Scholar  * Triscott, J. _ et al_.


Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. _Oncotarget_ 3, 1112–1123 (2012). Article 


PubMed  PubMed Central  Google Scholar  * Ketola, K., Kallioniemi, O. & Iljin, K. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in


prostate cancer cells. _PloS_ _ONE_ 7, e51470 (2012). Article  CAS  Google Scholar  * Safi, R. _ et al_. Copper signaling axis as a target for prostate cancer therapeutics. _Cancer Res._ 74,


5819–5831 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT02963051 (2017). *


Otto, T. _ et al_. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. _Cancer Cell_ 15, 67–78 (2009). Article  CAS  PubMed  Google Scholar  * Meulenbeld, H.


J. _ et al_. Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. _BJU Int._ 111, 44–52 (2013). Article  CAS 


PubMed  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT00766324 (2014). * Richards, M. W. _ et al_. Structural basis of


N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. _Proc. Natl Acad. Sci. USA_ 113, 13726–13731 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Gustafson, W. C. _ et al_. Drugging MYCN through an allosteric transition in Aurora kinase A. _Cancer Cell_ 26, 414–427 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * US


National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/study/NCT01799278 (2017). * Puissant, A. _ et al_. Targeting MYCN in neuroblastoma by BET


bromodomain inhibition. _Cancer Discov._ 3, 308–323 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wyce, A. _ et al_. Inhibition of BET bromodomain proteins as a therapeutic


approach in prostate cancer. _Oncotarget_ 4, 2419–2429 (2013). Article  PubMed  PubMed Central  Google Scholar  * Asangani, I. A. _ et al_. Therapeutic targeting of BET bromodomain proteins


in castration-resistant prostate cancer. _Nature_ 510, 278–282 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A.


Biology and evolution of poorly differentiated neuroendocrine tumors. _Nat. Med._ 23, 1–10 (2017). Article  CAS  PubMed  Google Scholar  * Rudin, C. M. _ et al_. Safety and efficacy of


single-agent rovalpituzumab tesirine (SC16LD6.5), a delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC) in recurrent or refractory small cell lung cancer (SCLC) [abstract].


_J. Clin. Oncol._ 34 (Suppl.), LBA8505 (2016). Article  Google Scholar  * Puca, L. _ et al_. Rovalpituzumab tesirine (Rova-T) as a therapeutic agent for Neuroendocrine Prostate Cancer (NEPC)


[abstract]. _J. Clin. Oncol._ 35 (Suppl.), 5029 (2017). Article  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT02709889


(2017). * Antonia, S. J. _ et al_. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. _Lancet


Oncol._ 17, 883–895 (2016). Article  CAS  PubMed  Google Scholar  * Graff, J. N. _ et al_. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. _Oncotarget_ 7,


52810–52817 (2016). PubMed  PubMed Central  Google Scholar  * Warrell, R. P. Jr. _ et al_. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-_trans_-retinoic acid).


_N. Engl. J. Med._ 324, 1385–1393 (1991). Article  PubMed  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT02395601


(2016). * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT02875548 (2018). * Mantovani, F., Walerych, D. & Sal, G. D. Targeting mutant


p53 in cancer: a long road to precision therapy. _FEBS J._ 284, 837–850 (2017). Article  CAS  PubMed  Google Scholar  * Lee, T. I. _ et al_. Control of developmental regulators by Polycomb


in human embryonic stem cells. _Cell_ 125, 301–313 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Helpap, B., Kollermann, J. & Oehler, U. Neuroendocrine differentiation


in prostatic carcinomas: histogenesis, biology, clinical relevance, and future therapeutical perspectives. _Urol. Intern._ 62, 133–138 (1999). Article  CAS  Google Scholar  * Nadal, R.,


Schweizer, M., Kryvenko, O. N., Epstein, J. I. & Eisenberger, M. A. Small cell carcinoma of the prostate. _Nat. Rev. Urol._ 11, 213–219 (2014). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Aparicio, A., Logothetis, C. J. & Maity, S. N. Understanding the lethal variant of prostate cancer: power of examining extremes. _Cancer Discov._ 1, 466–468 (2011).


Article  PubMed  PubMed Central  Google Scholar  * Wang, W. & Epstein, J. I. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. _Am. J. Surg.


Pathol._ 32, 65–71 (2008). Article  PubMed  Google Scholar  * Beltran, H. _ et al_. Aggressive variants of castration-resistant prostate cancer. _Clin. Cancer Res._ 20, 2846–2850 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Guo, C. C. _ et al_. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. _Hum. Pathol._ 42, 11–17 (2011). Article  CAS 


PubMed  Google Scholar  * Wang, H. T. _ et al_. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of


NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. _J. Clin. Oncol._ 32, 3383–3390 (2014). Article  PubMed  Google Scholar  * Aparicio, A. M. _ et al_.


Platinum-based chemotherapy for variant castrate-resistant prostate cancer. _Clin. Cancer Res._ 19, 3621–3630 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lotan, T. L. _


et al_. ERG gene rearrangements are common in prostatic small cell carcinomas. _Modern Pathol._ 24, 820–828 (2011). Article  CAS  Google Scholar  * Russo, M. V. _ et al_. SOX2 boosts major


tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. _Oncotarget_ 7, 12372–12385 (2016). PubMed  Google Scholar  * Clarke, M. F. _ et al_.


Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. _Cancer Res._ 66, 9339–9344 (2006). Article  CAS  PubMed  Google Scholar  * Reya,


T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. _Nature_ 414, 105–111 (2001). Article  CAS  PubMed  Google Scholar  * Clevers, H. The


cancer stem cell: premises, promises and challenges. _Nat. Med._ 17, 313–319 (2011). Article  CAS  PubMed  Google Scholar  * Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. &


Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. _Cancer Res._ 65, 10946–10951 (2005). Article  CAS  PubMed  Google Scholar  * Collins, A. T., Habib, F.


K., Maitland, N. J. & Neal, D. E. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. _J. Cell Sci._ 114, 3865–3872 (2001).


CAS  PubMed  Google Scholar  * Davies, A. H. & Zoubeidi, A. The androgen receptor bridges stem cell-associated signaling nodes in prostate stem cells. _Stem Cells Int._ 2016, 4829602


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maitland, N. J., Frame, F. M., Polson, E. S., Lewis, J. L. & Collins, A. T. Prostate cancer stem cells: do they have a


basal or luminal phenotype? _Hormones Cancer_ 2, 47–61 (2011). Article  PubMed  Google Scholar  * Gupta, P. B. _ et al_. Stochastic state transitions give rise to phenotypic equilibrium in


populations of cancer cells. _Cell_ 146, 633–644 (2011). Article  CAS  PubMed  Google Scholar  * Chaffer, C. L. _ et al_. Normal and neoplastic nonstem cells can spontaneously convert to a


stem-like state. _Proc. Natl Acad. Sci. USA_ 108, 7950–7955 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Flavahan, W. A. _ et al_. Brain tumor initiating cells adapt to


restricted nutrition through preferential glucose uptake. _Nat. Neurosci._ 16, 1373–1382 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bluemn, E. G. _ et al_. Androgen


receptor pathway-independent prostate cancer is sustained through FGF signaling. _Cancer Cell_ 32, 474–489.6 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Don-Doncow, N. _


et al_. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. _J. Biol. Chem._ 289, 15969–15978 (2014). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Hellsten, R., Johansson, M., Dahlman, A., Sterner, O. & Bjartell, A. Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. _PloS_ _ONE_ 6, e22118


(2011). Article  CAS  Google Scholar  * Attwell, S. _ et al_. Preclinical characterization of ZEN-3694, a novel BET bromodomain inhibitor entering phase I studies for metastatic


castration-resistant prostate cancer (mCRPC) [abstract]. _Cancer Res._ 76 (Suppl.), LB-207 (2016). Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_


https://www.clinicaltrials.gov/ct2/show/NCT02711956 (2017). * Antonarakis, E. S., Armstrong, A. J., Dehm, S. M. & Luo, J. Androgen receptor variant-driven prostate cancer: clinical


implications and therapeutic targeting. _Prostate Cancer Prostat. Dis._ 19, 231–241 (2016). Article  CAS  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_


https://www.clinicaltrials.gov/ct2/show/NCT02607228 (2018). * Yap, T. A. _ et al_. A phase I, open-label study of GSK2816126, an enhancer of zeste homolog 2 (EZH2) inhibitor, in patients


with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), transformed follicular lymphoma (tFL), other non-Hodgkin's lymphomas (NHL), multiple myeloma (MM) and solid tumor. _J.


Clin. Oncol._ 34 (Suppl.), TPS2595 (2016). Article  Google Scholar  * US National Library of Medicine. _ClinicalTrials.gov_ https://www.clinicaltrials.gov/ct2/show/NCT02082977 (2017). *


Knutson, S. K. _ et al_. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. _Mol. Cancer Ther._ 13, 842–854 (2014). Article  CAS


  PubMed  Google Scholar  * Vaswani, R. G. _ et al_. Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1


-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for


B-cell lymphomas. _J. Med. Chem._ 59, 9928–9941 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Constellation Pharmaceuticals. Constellation pharmaceuticals announces first


patient dosed in phase 1b/2 PROSTAR combination study of CPI-1205 in advanced form of prostate cancer. _Constellation Pharmaceuicals_


https://www.constellationpharma.com/constellation-pharmaceuticals-announces-first-patient-dosed-phase-1b-2-prostar-combination-study-cpi-1205-advanced-form-prostate-cancer/ (2017). Download


references ACKNOWLEDGEMENTS A.H.D. is supported by a Prostate Cancer Foundation (PCF) Young Investigator Award, in addition to the Canadian Institutes of Health Research. H.B. is supported


by the US Department of Defense, Damon Runyon Cancer Research Foundation, and PCF. Work in the laboratory of A.Z. is supported by funds from a PCF Challenge Award, Prostate Cancer Canada


(grant T2013-01), and the Terry Fox Research Institute (grant F15-05505). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada


Alastair H. Davies & Amina Zoubeidi * Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada Alastair H. Davies 


& Amina Zoubeidi * Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA Himisha Beltran Authors * Alastair


H. Davies View author publications You can also search for this author inPubMed Google Scholar * Himisha Beltran View author publications You can also search for this author inPubMed Google


Scholar * Amina Zoubeidi View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.H.D. researched data for the article and wrote the manuscript.


A.H.D, H.B., and A.Z. made substantial contributions to discussion of the article content and reviewed and/or edited the manuscript before submission. CORRESPONDING AUTHOR Correspondence to


Amina Zoubeidi. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2


POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR TABLE 1 POWERPOINT SLIDE FOR TABLE 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Davies, A., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. _Nat Rev Urol_ 15, 271–286 (2018).


https://doi.org/10.1038/nrurol.2018.22 Download citation * Published: 20 February 2018 * Issue Date: May 2018 * DOI: https://doi.org/10.1038/nrurol.2018.22 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative