Dimer asymmetry defines α-catenin interactions

Dimer asymmetry defines α-catenin interactions

Play all audios:

Loading...

ABSTRACT The F-actin–binding cytoskeletal protein α-catenin interacts with β-catenin–cadherin complexes and stabilizes cell-cell junctions. The β-catenin–α-catenin complex cannot bind


F-actin, whereas interactions of α-catenin with the cytoskeletal protein vinculin appear to be necessary to stabilize adherens junctions. Here we report the crystal structure of nearly


full-length human α-catenin at 3.7-Å resolution. α-catenin forms an asymmetric dimer where the four-helix bundle domains of each subunit engage in distinct intermolecular interactions. This


results in a left handshake–like dimer, wherein the two subunits have remarkably different conformations. The crystal structure explains why dimeric α-catenin has a higher affinity for


F-actin than does monomeric α-catenin, why the β-catenin–α-catenin complex does not bind F-actin, how activated vinculin links the cadherin–catenin complex to the cytoskeleton and why


α-catenin but not inactive vinculin can bind F-actin. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DISTINCT INTER-DOMAIN INTERACTIONS OF DIMERIC VERSUS MONOMERIC Α-CATENIN LINK 


CELL JUNCTIONS TO FILAMENTS Article Open access 16 March 2023 ACTIN-DEPENDENT Α-CATENIN OLIGOMERIZATION CONTRIBUTES TO ADHERENS JUNCTION ASSEMBLY Article Open access 20 February 2025


Α-CATENIN SWITCHES BETWEEN A SLIP AND AN ASYMMETRIC CATCH BOND WITH F-ACTIN TO COOPERATIVELY REGULATE CELL JUNCTION FLUIDITY Article Open access 03 March 2022 ACCESSION CODES PRIMARY


ACCESSIONS PROTEIN DATA BANK * 4IGG REFERENCED ACCESSIONS PROTEIN DATA BANK * 1DOV * 1DOW * 1H6G * 2Z6G REFERENCES * Volk, T. & Geiger, B. A 135-kd membrane protein of intercellular


adherens junctions. _EMBO J._ 3, 2249–2260 (1984). Article  CAS  Google Scholar  * Takeichi, M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. _Development_


102, 639–655 (1988). CAS  PubMed  Google Scholar  * Nishimura, T. & Takeichi, M. Remodeling of the adherens junctions during morphogenesis. _Curr. Top. Dev. Biol._ 89, 33–54 (2009).


Article  CAS  Google Scholar  * Brasch, J., Harrison, O.J., Honig, B. & Shapiro, L. Thinking outside the cell: how cadherins drive adhesion. _Trends Cell Biol._ 22, 299–310 (2012).


Article  CAS  Google Scholar  * Hirano, S., Nose, A., Hatta, K., Kawakami, A. & Takeichi, M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and


possible involvement of actin bundles. _J. Cell Biol._ 105, 2501–2510 (1987). Article  CAS  Google Scholar  * Takeichi, M. Morphogenetic roles of classic cadherins. _Curr. Opin. Cell Biol._


7, 619–627 (1995). Article  CAS  Google Scholar  * Pokutta, S. & Weis, W.I. Structure and mechanism of cadherins and catenins in cell-cell contacts. _Annu. Rev. Cell Dev. Biol._ 23,


237–261 (2007). Article  CAS  Google Scholar  * Lecuit, T. α-catenin mechanosensing for adherens junctions. _Nat. Cell Biol._ 12, 522–524 (2010). Article  CAS  Google Scholar  * Miyake, Y.


et al. Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. _Exp. Cell Res._ 312, 1637–1650 (2006). Article  CAS  Google


Scholar  * Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular


organization. _Cell_ 70, 293–301 (1992). Article  CAS  Google Scholar  * Watabe, M., Nagafuchi, A., Tsukita, S. & Takeichi, M. Induction of polarized cell-cell association and


retardation of growth by activation of the E-cadherin–catenin adhesion system in a dispersed carcinoma line. _J. Cell Biol._ 127, 247–256 (1994). Article  CAS  Google Scholar  * Torres, M.


et al. An α-E-catenin gene trap mutation defines its function in preimplantation development. _Proc. Natl. Acad. Sci. USA_ 94, 901–906 (1997). Article  CAS  Google Scholar  * Watabe-Uchida,


M. et al. α-Catenin–vinculin interaction functions to organize the apical junctional complex in epithelial cells. _J. Cell Biol._ 142, 847–857 (1998). Article  CAS  Google Scholar  *


Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. _Cell_ 104, 605–617


(2001). Article  CAS  Google Scholar  * Drees, F., Pokutta, S., Yamada, S., Nelson, W.J. & Weis, W.I. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates


actin-filament assembly. _Cell_ 123, 903–915 (2005). Article  CAS  Google Scholar  * Weis, W.I. & Nelson, W.J. Re-solving the cadherin-catenin-actin conundrum. _J. Biol. Chem._ 281,


35593–35597 (2006). Article  CAS  Google Scholar  * Yamada, S., Pokutta, S., Drees, F., Weis, W.I. & Nelson, W.J. Deconstructing the cadherin-catenin-actin complex. _Cell_ 123, 889–901


(2005). Article  CAS  Google Scholar  * Peng, X., Cuff, L.E., Lawton, C.D. & DeMali, K.A. Vinculin regulates cell-surface E-cadherin expression by binding to β-catenin. _J. Cell Sci._


123, 567–577 (2010). Article  CAS  Google Scholar  * Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction


development. _Nat. Cell Biol._ 12, 533–542 (2010). Article  CAS  Google Scholar  * Rangarajan, E.S. & Izard, T. α-Catenin unfurls upon binding to vinculin. _J. Biol. Chem._ 287,


18492–18499 (2012). Article  CAS  Google Scholar  * Abe, K. & Takeichi, M. EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin


belt. _Proc. Natl. Acad. Sci. USA_ 105, 13–19 (2008). Article  CAS  Google Scholar  * Hazan, R.B., Kang, L., Roe, S., Borgen, P.I. & Rimm, D.L. Vinculin is associated with the E-cadherin


adhesion complex. _J. Biol. Chem._ 272, 32448–32453 (1997). Article  CAS  Google Scholar  * Hülsken, J., Birchmeier, W. & Behrens, J. E-cadherin and APC compete for the interaction with


β-catenin and the cytoskeleton. _J. Cell Biol._ 127, 2061–2069 (1994). Article  Google Scholar  * Weiss, E.E., Kroemker, M., Rudiger, A.H., Jockusch, B.M. & Rudiger, M. Vinculin is part


of the cadherin-catenin junctional complex: complex formation between α-catenin and vinculin. _J. Cell Biol._ 141, 755–764 (1998). Article  CAS  Google Scholar  * Tachibana, K. et al. Two


cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. _J. Cell Biol._ 150, 1161–1176 (2000). Article  CAS  Google Scholar  * Shapiro,


L. et al. Structural basis of cell-cell adhesion by cadherins. _Nature_ 374, 327–337 (1995). Article  CAS  Google Scholar  * Itoh, M., Nagafuchi, A., Moroi, S. & Tsukita, S. Involvement


of ZO-1 in cadherin-based cell adhesion through its direct binding to α-catenin and actin filaments. _J. Cell Biol._ 138, 181–192 (1997). Article  CAS  Google Scholar  * Imamura, Y., Itoh,


M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of α-catenin required for the strong state of cadherin-based cell adhesion. _J. Cell Biol._ 144, 1311–1322 (1999). Article 


CAS  Google Scholar  * Pokutta, S. & Weis, W.I. Structure of the dimerization and β-catenin–binding region of α-catenin. _Mol. Cell_ 5, 533–543 (2000). Article  CAS  Google Scholar  *


Pokutta, S., Drees, F., Takai, Y., Nelson, W.J. & Weis, W.I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. _J. Biol. Chem._ 277,


18868–18874 (2002). Article  CAS  Google Scholar  * Yang, J., Dokurno, P., Tonks, N.K. & Barford, D. Crystal structure of the M-fragment of α-catenin: implications for modulation of cell


adhesion. _EMBO J._ 20, 3645–3656 (2001). Article  CAS  Google Scholar  * Choi, H.J. et al. αE-catenin is an autoinhibited molecule that coactivates vinculin. _Proc. Natl. Acad. Sci. USA_


109, 8576–8581 (2012). Article  CAS  Google Scholar  * Peng, X., Maiers, J.L., Choudhury, D., Craig, S.W. & Demali, K.A. α-Catenin uses a novel mechanism to activate vinculin. _J. Biol.


Chem._ 287, 7728–7737 (2012). Article  CAS  Google Scholar  * Jockusch, B.M. & Isenberg, G. Interaction of α-actinin and vinculin with actin: opposite effects on filament network


formation. _Proc. Natl. Acad. Sci. USA_ 78, 3005–3009 (1981). Article  CAS  Google Scholar  * Wilkins, J.A. & Lin, S. High-affinity interaction of vinculin with actin filaments in vitro.


_Cell_ 28, 83–90 (1982). Article  CAS  Google Scholar  * Johnson, R.P. & Craig, S.W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains.


_Nature_ 373, 261–264 (1995). Article  CAS  Google Scholar  * Weekes, J., Barry, S.T. & Critchley, D.R. Acidic phospholipids inhibit the intramolecular association between the N- and


C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. _Biochem. J._ 314, 827–832 (1996). Article  CAS  Google Scholar  * Steimle, P.A., Hoffert,


J.D., Adey, N.B. & Craig, S.W. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. _J. Biol. Chem._ 274, 18414–18420 (1999). Article  CAS  Google Scholar  *


Borgon, R.A., Vonrhein, C., Bricogne, G., Bois, P.R. & Izard, T. Crystal structure of human vinculin. _Structure_ 12, 1189–1197 (2004). Article  CAS  Google Scholar  * Rangarajan, E.S.,


Lee, J.H., Yogesha, S.D. & Izard, T. A helix replacement mechanism directs metavinculin functions. _PLoS ONE_ 5, e10679 (2010). Article  Google Scholar  * Xing, Y. et al. Crystal


structure of a full-length β-catenin. _Structure_ 16, 478–487 (2008). Article  CAS  Google Scholar  * Pappas, D.J. & Rimm, D.L. Direct interaction of the C-terminal domain of α-catenin


and F-actin is necessary for stabilized cell-cell adhesion. _Cell Commun. Adhes._ 13, 151–170 (2006). Article  Google Scholar  * Johnson, R.P. & Craig, S.W. The carboxy-terminal tail


domain of vinculin contains a cryptic binding site for acidic phospholipids. _Biochem. Biophys. Res. Commun._ 210, 159–164 (1995). Article  CAS  Google Scholar  * Rimm, D.L., Koslov, E.R.,


Kebriaei, P., Cianci, C.D. & Morrow, J.S. α1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. _Proc. Natl. Acad.


Sci. USA_ 92, 8813–8817 (1995). Article  CAS  Google Scholar  * Knudsen, K.A., Soler, A.P., Johnson, K.R. & Wheelock, M.J. Interaction of α-actinin with the cadherin/catenin cell-cell


adhesion complex via α-catenin. _J. Cell Biol._ 130, 67–77 (1995). Article  CAS  Google Scholar  * Pradhan, D., Lombardo, C.R., Roe, S., Rimm, D.L. & Morrow, J.S. α-Catenin binds


directly to spectrin and facilitates spectrin-membrane assembly _in vivo_. _J. Biol. Chem._ 276, 4175–4181 (2001). Article  CAS  Google Scholar  * Kobielak, A. & Fuchs, E. α-Catenin: at


the junction of intercellular adhesion and actin dynamics. _Nat. Rev. Mol. Cell Biol._ 5, 614–625 (2004). Article  CAS  Google Scholar  * Nagafuchi, A., Ishihara, S. & Tsukita, S. The


roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin–α-catenin fusion molecules. _J. Cell Biol._ 127, 235–245 (1994). Article  CAS  Google Scholar  *


Sako, Y., Nagafuchi, A., Tsukita, S., Takeichi, M. & Kusumi, A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single


particle tracking: corralling and tethering by the membrane skeleton. _J. Cell Biol._ 140, 1227–1240 (1998). Article  CAS  Google Scholar  * Pacquelet, A. & Rorth, P. Regulatory


mechanisms required for DE-cadherin function in cell migration and other types of adhesion. _J. Cell Biol._ 170, 803–812 (2005). Article  CAS  Google Scholar  * Chen, H., Cohen, D.M.,


Choudhury, D.M., Kioka, N. & Craig, S.W. Spatial distribution and functional significance of activated vinculin in living cells. _J. Cell Biol._ 169, 459–470 (2005). Article  CAS  Google


Scholar  * Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. _Acta Crystallogr. D Biol. Crystallogr._ 67, 293–302 (2011). Article  CAS  Google Scholar  * Kabsch,


W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. _J. Appl. Crystalllogr._ 26, 795–800 (1993). Article  CAS  Google Scholar


  * Evans, P. Scaling and assessment of data quality. _Acta Crystallogr. D Biol. Crystallogr._ 62, 72–82 (2006). Article  Google Scholar  * Vonrhein, C., Blanc, E., Roversi, P. &


Bricogne, G. Automated structure solution with autoSHARP. _Methods Mol. Biol._ 364, 215–230 (2007). CAS  PubMed  Google Scholar  * Vagin, A. & Teplyakov, A. MOLREP: an automated program


for molecular replacement. _J. Appl. Crystallogr._ 30, 1022–1025 (1997). Article  CAS  Google Scholar  * Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. _Acta


Crystallogr. D Biol. Crystallogr._ 60, 2126–2132 (2004). Article  Google Scholar  * Bricogne, G. et al. _BUSTER version 2.9_ (Global Phasing Ltd., 2011). * Smart, O.S. et al. Refinement with


local structure similarity restraints (LSSR) enables exploitation of information from related structures and facilitates use of NCS. _Abstr. Annu. Meet. Am. Crystallogr. Assoc., Knoxville,


TN_, abstr. TP139 (2008). * Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. _Acta Crystallogr. D Biol. Crystallogr._ 66, 12–21 (2010). Article


  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We are indebted to our colleagues at Scripps Florida: J. Cleveland for discussions and critical review of the manuscript, Z. Wu


and P. Bois for sequencing and P. Bois for fruitful discussions. We thank C. Vonrhein and G. Bricogne (Global Phasing Ltd.) for analyses and helpful discussions. We are grateful to the staff


at the SER-CAT (BM22) and SSRL (11-1) for synchrotron support. T.I. is supported by grants from the US National Institute of General Medical Sciences from the US National Institutes of


Health (GM071596 and GM094483) and by start-up funds provided to Scripps Florida from the State of Florida. This is publication no. 21863 from The Scripps Research Institute. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Cancer Biology, Scripps Research Institute, Jupiter, Florida, USA Erumbi S Rangarajan & Tina Izard Authors * Erumbi S Rangarajan View


author publications You can also search for this author inPubMed Google Scholar * Tina Izard View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS Both authors contributed to the design and interpretation of all aspects of this work. E.S.R. performed all of the experiments. T.I. wrote the manuscript. CORRESPONDING AUTHOR


Correspondence to Tina Izard. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES


Supplementary Figures 1–4 and Supplementary Table 1 (PDF 39296 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Rangarajan, E., Izard, T. Dimer


asymmetry defines α-catenin interactions. _Nat Struct Mol Biol_ 20, 188–193 (2013). https://doi.org/10.1038/nsmb.2479 Download citation * Received: 02 August 2012 * Accepted: 27 November


2012 * Published: 06 January 2013 * Issue Date: February 2013 * DOI: https://doi.org/10.1038/nsmb.2479 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative