Increased baseline rasgrp1 signals enhance stem cell fitness during native hematopoiesis

Increased baseline rasgrp1 signals enhance stem cell fitness during native hematopoiesis

Play all audios:

Loading...

ABSTRACT Oncogenic mutations in _RAS_ genes, like _KRAS__G12D_ or _NRAS__G12D_, trap Ras in the active state and cause myeloproliferative disorder and T cell leukemia (T-ALL) when induced in


the bone marrow via _Mx1CRE_. The RAS exchange factor RASGRP1 is frequently overexpressed in T-ALL patients. In T-ALL cell lines overexpression of RASGRP1 increases flux through the


RASGTP/RasGDP cycle. Here we expanded _RASGRP1_ expression surveys in pediatric T-ALL and generated a _RoLoRiG_ mouse model crossed to _Mx1CRE_ to determine the consequences of induced


RASGRP1 overexpression in primary hematopoietic cells. RASGRP1-overexpressing, GFP-positive cells outcompeted wild type cells and dominated the peripheral blood compartment over time.


RASGRP1 overexpression bestows gain-of-function colony formation properties to bone marrow progenitors in medium containing limited growth factors. RASGRP1 overexpression enhances baseline


mTOR-S6 signaling in the bone marrow, but not in vitro cytokine-induced signals. In agreement with these mechanistic findings, hRASGRP1-ires-EGFP enhances fitness of stem- and progenitor-


cells, but only in the context of native hematopoiesis. RASGRP1 overexpression is distinct from _KRAS__G12D_ or _NRAS__G12D_, does not cause acute leukemia on its own, and leukemia virus


insertion frequencies predict that RASGRP1 overexpression can effectively cooperate with lesions in many other genes to cause acute T-ALL. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 50 print issues and online access


$259.00 per year only $5.18 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


ONCOGENIC RAS PROMOTES LEUKEMIC TRANSFORMATION OF CUX1-DEFICIENT CELLS Article 01 February 2023 _RAS_ MUTATIONS DRIVE PROLIFERATIVE CHRONIC MYELOMONOCYTIC LEUKEMIA VIA A KMT2A-PLK1 AXIS


Article Open access 18 May 2021 KDM6B PROTECTS T-ALL CELLS FROM NOTCH1-INDUCED ONCOGENIC STRESS Article 17 February 2023 REFERENCES * Terwilliger T, Abdul-Hay M. Acute lymphoblastic


leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7:e577. https://doi.org/10.1038/bcj.2017.53. Article  CAS  Google Scholar  * von Lintig FC, Huvar I, Law P, Diccianni


MB, Yu AL, Boss GR. Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res. 2000;6:1804–10. Google Scholar  * Hartzell C, Ksionda O, Lemmens


E, Coakley K, Yang M, Dail M, et al. Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal. 2013;6:ra21. https://doi.org/10.1126/scisignal.2003848.


Article  CAS  Google Scholar  * Ksionda O, Melton AA, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the


Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658–68. https://doi.org/10.1038/onc.2015.431. Article  CAS  Google Scholar  * Jackson EL, Willis N, Mercer K,


Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.


https://doi.org/10.1101/gad.943001. Article  CAS  Google Scholar  * Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.


https://doi.org/10.1038/nrc2109. Article  CAS  Google Scholar  * Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ, et al. RAS mutation in acute myeloid leukemia is associated with


distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood. 2005;106:2113–9. https://doi.org/10.1182/blood-2005-03-0867. Article  CAS  Google


Scholar  * Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet.


2017;49:1211–8. https://doi.org/10.1038/ng.3909. Article  CAS  Google Scholar  * Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269:1427–9. Article 


CAS  Google Scholar  * Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H, et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a


myeloproliferative disease. J Clin Invest. 2004;113:528–38. https://doi.org/10.1172/JCI20476. Article  CAS  Google Scholar  * Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J, et al.


Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA. 2004;101:597–602. Article  CAS  Google Scholar  *


Kindler T, Cornejo MG, Scholl C, Liu J, Leeman DS, Haydu JE, et al. K-RasG12D-induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to gamma-secretase


inhibitors. Blood. 2008;112:3373–82. Article  CAS  Google Scholar  * Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML, et al. Oncogenic Kras initiates leukemia in


hematopoietic stem cells. PLoS Biol. 2009;7:e59. Article  Google Scholar  * Wang J, Liu Y, Li Z, Du J, Ryu MJ, Taylor PR, et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF


signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116:5991–6002. https://doi.org/10.1182/blood-2010-04-281527. Article  CAS 


Google Scholar  * Li Q, Haigis KM, McDaniel A, Harding-Theobald E, Kogan SC, Akagi K, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus.


Blood. 2011;117:2022–32. https://doi.org/10.1182/blood-2010-04-280750. Article  CAS  Google Scholar  * Oki-Idouchi CE, Lorenzo PS. Transgenic overexpression of RasGRP1 in mouse epidermis


results in spontaneous tumors of the skin. Cancer Res. 2007;67:276–80. Article  CAS  Google Scholar  * Klinger MB, Guilbault B, Goulding RE, Kay RJ. Deregulated expression of RasGRP1


initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene. 2005;24:2695–704. Article  CAS  Google Scholar  * Oki T, Kitaura J, Watanabe-Okochi N, Nishimura K, Maehara A,


Uchida T, et al. Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia. 2012;26:1038–45. https://doi.org/10.1038/leu.2011.328.


Article  CAS  Google Scholar  * Norment AM, Bogatzki LY, Klinger M, Ojala EW, Bevan MJ, Kay RJ. Transgenic expression of RasGRP1 induces the maturation of double-negative thymocytes and


enhances the production of CD8 single-positive thymocytes. J Immunol. 2003;170:1141–9. Article  CAS  Google Scholar  * Jun JE, Rubio I, Roose JP. Regulation of Ras exchange factors and


cellular localization of Ras activation by lipid messengers in T cells. Front Immunol. 2013;4:239. https://doi.org/10.3389/fimmu.2013.00239. Article  CAS  Google Scholar  * Ksionda O,


Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. Front Biol (Beijing). 2013;8:508–32. https://doi.org/10.1007/s11515-013-1276-9. Article  CAS  Google Scholar


  * Winter SS, Dunsmore KP, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Improved survival for children and young adults with t-lineage acute lymphoblastic leukemia: results from the


children’s oncology group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34. https://doi.org/10.1200/JCO.2018.77.7250. Article  CAS  Google Scholar  * Ksionda, O, Melton,


AA, Bache, J, Tenhagen, M, Bakker, J, Harvey, R et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to


protumorigenic cytokines. Oncogene, https://doi.org/10.1038/onc.2015.431 (2015). * Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data.


Bioinforma. 2015;31:166–9. https://doi.org/10.1093/bioinformatics/btu638. Article  CAS  Google Scholar  * Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for


RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8. Article  CAS  Google Scholar  * Kortum RL, Sommers CL, Pinski JM, Alexander CP, Merrill RK, Li


W, et al. Deconstructing Ras signaling in the thymus. Mol Cell Biol. 2012;32:2748–59. https://doi.org/10.1128/MCB.00317-12. Article  CAS  Google Scholar  * Priatel JJ, Teh SJ, Dower NA,


Stone JC, Teh HS. RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity. 2002;17:617–27. Article  CAS  Google Scholar


  * Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34. https://doi.org/10.1038/nature12984. Article  CAS  Google Scholar  * Zhang CC,


Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol. 2008;15:307–11. https://doi.org/10.1097/MOH.0b013e3283007db5. Article  CAS  Google Scholar  * Vigil D,


Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?. Nat Rev Cancer. 2010;10:842–57. https://doi.org/10.1038/nrc2960. Article 


CAS  Google Scholar  * Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev. 2019;291:134–53.


https://doi.org/10.1111/imr.12796. Article  CAS  Google Scholar  * Mues M, Roose JP. Distinct oncogenic Ras signals characterized by profound differences in flux through the RasGDP/RasGTP


cycle. Small GTPases. 2017;8:20–25. https://doi.org/10.1080/21541248.2016.1187323. Article  CAS  Google Scholar  * Wang J, Kong G, Liu Y, Du J, Chang YI, Tey SR, et al. Nras(G12D/+) promotes


leukemogenesis by aberrantly regulating hematopoietic stem cell functions. Blood. 2013;121:5203–7. https://doi.org/10.1182/blood-2012-12-475863. Article  CAS  Google Scholar  * Soriano P.


Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–71. Article  CAS  Google Scholar  * Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ‘Green


mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–9. Article  CAS  Google Scholar  * Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of native


haematopoiesis. Nature. 2014;514:322–7. https://doi.org/10.1038/nature13824. Article  CAS  Google Scholar  * Li Q, Bohin N, Wen T, Ng V, Magee J, Chen SC, et al. Oncogenic Nras has bimodal


effects on stem cells that sustainably increase competitiveness. Nature. 2013;504:143–7. https://doi.org/10.1038/nature12830. Article  CAS  Google Scholar  * Ksionda O, Mues M, Wandler AM,


Donker L, Tenhagen M, Jun J, et al. Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as


monotherapy. PLoS ONE. 2018;13:e0193849. https://doi.org/10.1371/journal.pone.0193849. Article  CAS  Google Scholar  * Romero-Moya D, Bueno C, Montes R, Navarro-Montero O, Iborra FJ, Lopez


LC, et al. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica. 2013;98:1022–9.


https://doi.org/10.3324/haematol.2012.079244. Article  CAS  Google Scholar  * Downward J. Cancer biology: signatures guide drug choice. Nature. 2006;439:274–5. Article  CAS  Google Scholar 


* Schubbert S, Bollag G, Shannon K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev. 2007;17:15–22.


https://doi.org/10.1016/j.gde.2006.12.004. Article  CAS  Google Scholar  * Stine RR, Matunis EL. Stem cell competition: finding balance in the niche. Trends Cell Biol. 2013;23:357–64.


https://doi.org/10.1016/j.tcb.2013.03.001. Article  CAS  Google Scholar  * Myers DR, Norlin E, Vercoulen Y, Roose JP. Active Tonic mTORC1 Signals Shape Baseline Translation in Naive T Cells.


Cell Rep.2019;27:1858–74 e1856. https://doi.org/10.1016/j.celrep.2019.04.037. Article  CAS  Google Scholar  * Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus


differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2:640–53. https://doi.org/10.1002/wsbm.86. Article  CAS  Google Scholar  * Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell


niches. Nat Rev Immunol. 2006;6:93–106. https://doi.org/10.1038/nri1779. Article  CAS  Google Scholar  * Zhang Y, Gao S, Xia J, Liu F. Hematopoietic hierarchy - an updated roadmap. Trends


Cell Biol. 2018;28:976–86. https://doi.org/10.1016/j.tcb.2018.06.001. Article  Google Scholar  * Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci


USA. 1971;68:820–3. Article  Google Scholar  * Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42. Article  CAS  Google Scholar  * Montes R,


Ayllon V, Prieto C, Bursen A, Prelle C, Romero-Moya D. et al. Ligand-independent FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform cord blood CD34+ cells. Leukemia.


2014;28:666–74. https://doi.org/10.1038/leu.2013.346. Article  CAS  Google Scholar  * Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R, et al. Revisiting the biology of infant


t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood. 2015;126:2676–85. https://doi.org/10.1182/blood-2015-09-667378. Article  CAS  Google Scholar  * Sun C, Chang L, Zhu X.


Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget. 2017;8:35445–59. https://doi.org/10.18632/oncotarget.16367.


Article  Google Scholar  * Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M. Pvt1-encoded microRNAs in oncogenesis. Retrovirology. 2008;5:4. Article  Google Scholar  * Xu Z, Wang


M, Wang L, Wang Y, Zhao X, Rao Q, et al. Aberrant expression of TSC2 gene in the newly diagnosed acute leukemia. Leuk Res. 2009;33:891–7. https://doi.org/10.1016/j.leukres.2009.01.041.


Article  CAS  Google Scholar  * Kalaitzidis D, Sykes SM, Wang Z, Punt N, Tang Y, Ragu C, et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. cell


stem cell. 2012;11:429–39. https://doi.org/10.1016/j.stem.2012.06.009. Article  CAS  Google Scholar  * Kentsis A, Look AT. Distinct and dynamic requirements for mTOR signaling in


hematopoiesis and leukemogenesis. cell stem cell. 2012;11:281–2. https://doi.org/10.1016/j.stem.2012.08.007. Article  CAS  Google Scholar  * Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL,


Morrison SJ. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. cell stem cell. 2012;11:415–28.


https://doi.org/10.1016/j.stem.2012.05.026. Article  CAS  Google Scholar  * Sanjuan-Pla A, Romero-Moya D, Prieto C, Bueno C, Bigas A, Menendez P. Intra-bone marrow transplantation confers


superior multilineage engraftment of murine aorta-gonad mesonephros cells over intravenous transplantation. Stem Cells Dev. 2016;25:259–65. https://doi.org/10.1089/scd.2015.0309. Article 


CAS  Google Scholar  * Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood


production in normal and regenerative conditions. Cell Stem Cell. 2015;17:35–46. https://doi.org/10.1016/j.stem.2015.05.003. Article  CAS  Google Scholar  * Herault A, Binnewies M, Leong S,


Calero-Nieto FJ, Zhang SY, Kang YA, et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544:53–58. https://doi.org/10.1038/nature21693.


Article  CAS  Google Scholar  * Roose JP, Diehn M, Tomlinson MG, Lin J, Alizadeh AA, Botstein D, et al. T cell receptor-independent basal signaling via Erk and Abl kinases suppresses RAG


gene expression. PLoS Biol. 2003;1:E53. Article  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by an Alex’ Lemonade Stand Foundation Innovator Award, the


NIH/NCI (R01 – CA187318), and the NIH/NHLBI (R01 – HL120724) (all to JPR). Further support came from a Leukemia & Lymphoma Society grant (to MM) and the Rothschild Fellowship for


postdoctoral fellows in the Natural, Exact or Life Sciences and Engineering (to LK), and PD is a Mark Foundation Momentum Fellow supported by a fellowship from the Mark Foundation for Cancer


Research; and by NCI grants CA021765 (St Jude Comprehensive Cancer Center Support Grant), an NCI R35 Outstanding Investigator Award (R35 CA197695) and a St. Baldrick’s Foundation Robert J.


Arceci Innovation award. We thank the members of the Roose lab and the Heme-Onc community at UCSF for useful suggestions and comments. We thank UCSF flow cytometry facility and DRC Center


Grant NIH P30 DK063720. We thank Emmanuelle Passague and her lab for kindly providing us _Mx1-CRE_ mice. AUTHOR INFORMATION Author notes * Olga Ksionda Present address: Liggins Institute,


The University of Auckland, Auckland, New Zealand * Marsilius Mues Present address: Miltenyi Biotec GmbH, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany * These authors


contributed equally: Laila Karra, Damia Romero-Moya, Olga Ksionda AUTHORS AND AFFILIATIONS * Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA


Laila Karra, Damia Romero-Moya, Olga Ksionda, Milana Krush, Marsilius Mues, Philippe Depeille & Jeroen P. Roose * Department of Pathology and Hematological Malignancies Program, St. Jude


Children’s Research Hospital, Memphis, TN, 38105, USA Zhaohui Gu & Charles Mullighan Authors * Laila Karra View author publications You can also search for this author inPubMed Google


Scholar * Damia Romero-Moya View author publications You can also search for this author inPubMed Google Scholar * Olga Ksionda View author publications You can also search for this author


inPubMed Google Scholar * Milana Krush View author publications You can also search for this author inPubMed Google Scholar * Zhaohui Gu View author publications You can also search for this


author inPubMed Google Scholar * Marsilius Mues View author publications You can also search for this author inPubMed Google Scholar * Philippe Depeille View author publications You can


also search for this author inPubMed Google Scholar * Charles Mullighan View author publications You can also search for this author inPubMed Google Scholar * Jeroen P. Roose View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS LK, DR-M, OK, and MM performed experiments and analyzed results. PD made the mouse construct. ZG and


CGM generated and analyzed human T-ALL genomic data. LK and DR-M. made the figures; JR designed the research and secured the majority of the funding. LK, DR-M, and JR wrote the paper.


CORRESPONDING AUTHOR Correspondence to Jeroen P. Roose. ETHICS DECLARATIONS CONFLICT OF INTEREST Jeroen Roose is a co-founder and scientific advisor of Seal Biosciences, Inc. and on the


scientific advisory committee for the Mark Foundation for Cancer Research. C.G.M. receives research funding from Loxo Oncology, Abbvie, and Pfizer, and speaking fees from Amgen. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTAL


FIGURE S1 SUPPLEMENTAL FIGURE S2 SUPPLEMENTAL FIGURE S3 SUPPLEMENTAL FIGURE S4 SUPPLEMENTAL FIGURE S5 SUPPLEMENTAL FIGURE LEGENDS SUPPLEMENTAL METHODS RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Karra, L., Romero-Moya, D., Ksionda, O. _et al._ Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis.


_Oncogene_ 39, 6920–6934 (2020). https://doi.org/10.1038/s41388-020-01469-8 Download citation * Received: 14 May 2020 * Accepted: 10 September 2020 * Published: 28 September 2020 * Issue


Date: 05 November 2020 * DOI: https://doi.org/10.1038/s41388-020-01469-8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative