Getting glued in the sea | Polymer Journal

Getting glued in the sea | Polymer Journal

Play all audios:

Loading...

ABSTRACT Inspired by ocean organisms, scientists have been developing adhesives for application in the marine environment. However, water and high salinity, which not only weaken the


interfacial bonding by the hydration layer but also induce the deterioration of adhesives by erosion, swelling, hydrolysis, or plasticization, are detrimental to adhesion, resulting in


specific challenges in the development of under-seawater adhesives. In this focus review, current adhesives that are capable of macroscopic adhesion in seawater were summarized. The design


strategies and performance of these adhesives were reviewed based on their bonding methods. Finally, some future research directions and perspectives for under-seawater adhesives were


discussed. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to


this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy


now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact


customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ULTRASTRONG UNDERWATER ADHESION ON DIVERSE SUBSTRATES USING NON-CANONICAL PHENOLIC GROUPS Article Open access 13 April 2022


PRESSURE-SENSITIVE IN-SITU UNDERWATER ADHESIVES Article Open access 02 January 2025 AUTONOMOUS UNDERWATER ADHESION DRIVEN BY WATER-INDUCED INTERFACIAL REARRANGEMENT Article Open access 17


October 2023 REFERENCES * Legg M, Yücel MK, Garcia de Carellan I, Kappatos V, Selcuk C, Gan TH. Acoustic methods for biofouling control: A review. Ocean Eng. 2015;103:237–47. Article  Google


Scholar  * Ting RY. A Study on Elastomer/Metal Bonds Applicable in Underwater Sonar Systems. In Adhesive Joints: Formation, Characteristics, and Testing, Mittal, KL Ed.; Springer US; Plenum


Press, New York; 1984. pp 555–64. * Momber AW, Plagemann P, Stenzel V. The adhesion of corrosion protection coating systems for offshore wind power constructions after three years under


offshore exposure. Int J Adhes Adhes. 2016;65:96–101. Article  CAS  Google Scholar  * Tserpes K, Barroso-Caro A, Carraro PA, Beber VC, Floros I, Gamon W, et al. A review on failure theories


and simulation models for adhesive joints. J Adhes. 2022;98:1855–915. Article  CAS  Google Scholar  * Kinloch AJ. Interfacial Fracture Mechanical Aspects of Adhesive Bonded Joints—A Review.


J Adhes. 1979;10:193–219. Article  CAS  Google Scholar  * Kerrison PD, Stanley MS, Hughes AD. Textile substrate seeding of Saccharina latissima sporophytes using a binder: An effective


method for the aquaculture of kelp. Algal Res. 2018;33:352–7. Article  Google Scholar  * Zheng SY, Zhou J, Wang S, Wang Y-J, Liu S, Du G, et al. Water-Triggered Spontaneously Solidified


Adhesive: From Instant and Strong Underwater Adhesion to In Situ Signal Transmission. Adv Funct Mater. 2022;32:2205597. Article  CAS  Google Scholar  * Fan HL, Gong JP. Bioinspired


Underwater Adhesives. Adv Mater. 2021;33:2102983. Article  CAS  Google Scholar  * Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc


Rev. 2021;50:13321–45. Article  CAS  PubMed  Google Scholar  * Cui C, Liu W. Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Prog Polym Sci.


2021;116:101388. Article  CAS  Google Scholar  * Israelachvili JN. Intermolecular and Surface Forces. 3rd ed. London: Elsevier; 2010. * Raviv U, Klein J. Fluidity of Bound Hydration Layers.


Science. 2002;297:1540–3. Article  CAS  PubMed  Google Scholar  * Maier GP, Rapp MV, Waite JH, Israelachvili JN, Butler A. Adaptive synergy between catechol and lysine promotes wet adhesion


by surface salt displacement. Science. 2015;349:628–32. Article  CAS  PubMed  Google Scholar  * Wilker JJ. Positive charges and underwater adhesion. Science. 2015;349:582–3. Article  CAS 


PubMed  Google Scholar  * Lee BP, Messersmith PB, Israelachvili JN, Waite JH. Mussel-Inspired Adhesives and Coatings. Annu Rev Mater Res. 2011;41:99–132. Article  CAS  PubMed  PubMed Central


  Google Scholar  * Fan HL, Wang JH, Gong JP. Barnacle Cement Proteins-Inspired Tough Hydrogels with Robust, Long-Lasting, and Repeatable Underwater Adhesion. Adv Funct Mater.


2021;31:2009334. Article  CAS  Google Scholar  * Rao P, Sun TL, Chen L, Takahashi R, Shinohara G, Guo H, et al. Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on


a Multiscale Design. Adv Mater. 2018;30:1801884. Article  Google Scholar  * Zhu X, Wei C, Chen H, Zhang C, Peng H, Wang D, et al. A Cation-Methylene-Phenyl Sequence Encodes Programmable


Poly(Ionic Liquid) Coacervation and Robust Underwater Adhesion. Adv Funct Mater. 2021;32:2105464. Article  Google Scholar  * Ma X, Zhou X, Ding J, Huang B, Wang P, Zhao Y, et al. Hydrogels


for underwater adhesion: adhesion mechanism, design strategies and applications. J Mater Chem A. 2022;10:11823–53. Article  CAS  Google Scholar  * Hofman AH, van Hees IA, Yang J, Kamperman


M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Adv Mater. 2018;30:1704640. Article  Google Scholar  * Ma S, Wu Y, Zhou F. Bioinspired synthetic wet adhesives: from


permanent bonding to reversible regulation. Curr Opin Colloid Interface Sci. 2020;47:84–98. Article  CAS  Google Scholar  * Cui M, Ren S, Wei S, Sun C, Zhong C. Natural and bio-inspired


underwater adhesives: Current progress and new perspectives. APL Mater. 2017;5:116102. Article  Google Scholar  * Chen Y, Meng J, Gu Z, Wan X, Jiang L, Wang S. Bioinspired Multiscale Wet


Adhesive Surfaces: Structures and Controlled Adhesion. Adv Funct Mater. 2019;30:1905287. Article  Google Scholar  * Xu L, Huang Z, Deng Z, Du Z, Sun TL, Guo Z-H, et al. A Transparent, Highly


Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Adv Mater. 2021;33:2105306. Article  CAS  Google


Scholar  * Liu X, Yu H, Wang L, Huang Z, Haq F, Teng L, et al. Recent Advances on Designs and Applications of Hydrogel Adhesives. Adv Mater Interfaces. 2022;9:2101038. Article  CAS  Google


Scholar  * Wang S, Liu J, Wang L, Cai H, Wang Q, Wang W, et al. Underwater Adhesion and Anti-Swelling Hydrogels. Adv Mater Technol. 2022;n/a:2201477. https://doi.org/10.1002/admt.202201477.


* Yin Yuen H, Ho Pan Bei B, Zhao X. Underwater and wet adhesion strategies for hydrogels in biomedical applications. Chem Eng J. 2021;431:133372. Article  Google Scholar  * Nam S, Mooney D.


Polymeric Tissue Adhesives. Chem Rev. 2021;121:11336–84. Article  CAS  PubMed  Google Scholar  * Baik S, Kim DW, Park Y, Lee T-J, Ho Bhang S, Pang C. A wet-tolerant adhesive patch inspired


by protuberances in suction cups of octopi. Nature. 2017;546:396. Article  CAS  PubMed  Google Scholar  * Fan HL, Wang JH, Tao Z, Huang JC, Rao P, Kurokawa T, et al. Adjacent


cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater. Nat Commun. 2019;10:5127. Article  PubMed  PubMed Central  Google Scholar  * Akdogan Y, Wei W, Huang


K-Y, Kageyama Y, Danner EW, Miller DR, et al. Intrinsic Surface-Drying Properties of Bioadhesive Proteins. Angew Chem Int Ed. 2014;53:11253–6. Article  CAS  Google Scholar  * White JD,


Wilker JJ. Underwater Bonding with Charged Polymer Mimics of Marine Mussel Adhesive Proteins. Macromolecules. 2011;44:5085–8. Article  CAS  Google Scholar  * Yuk H, Varela CE, Nabzdyk CS,


Mao X, Padera RF, Roche ET, et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature. 2019;575:169–74. Article  CAS  PubMed  Google Scholar  * Beharaj A, McCaslin EZ,


Blessing WA, Grinstaff MW. Sustainable polycarbonate adhesives for dry and aqueous conditions with thermoresponsive properties. Nat Commun. 2019;10:5478. Article  CAS  PubMed  PubMed Central


  Google Scholar  * Su X, Luo Y, Tian Z, Yuan Z, Han Y, Dong R, et al. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Mater


Horiz. 2020;7:2651–61. Article  CAS  Google Scholar  * Li X, Deng Y, Lai J, Zhao G, Dong S. Tough, Long-Term, Water-Resistant, and Underwater Adhesion of Low-Molecular-Weight Supramolecular


Adhesives. J Am Chem Soc. 2020;142:5371–9. Article  CAS  PubMed  Google Scholar  * Fan HL, Wang JH, Jin ZX. Tough, Swelling-Resistant, Self-Healing, and Adhesive Dual-Cross-Linked Hydrogels


Based on Polymer–Tannic Acid Multiple Hydrogen Bonds. Macromolecules 2018;51:1696–705. Article  CAS  Google Scholar  * Gong JP. Materials both Tough and Soft. Science. 2014;344:161–2.


Article  CAS  PubMed  Google Scholar  * Cui K, Gong JP. Aggregated structures and their functionalities in hydrogels. Aggregate. 2021;2:e33. Article  CAS  Google Scholar  * Ahn BK.


Perspectives on Mussel-Inspired Wet Adhesion. J Am Chem Soc. 2017;139:10166–71. Article  CAS  PubMed  Google Scholar  * Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials:


Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem Rev. 2014;114:5057–115. Article  CAS  PubMed  Google Scholar  * Jin ZX, Fan HL. The modulation of


melanin-like materials: methods, characterization and applications. Polym Int. 2016;65:1258–66. Article  CAS  Google Scholar  * Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in


synthesis and application of mussel-inspired adhesives. Nanoscale. 2020;12:1307–24. Article  CAS  PubMed  Google Scholar  * Fan HL, Wang JH, Zhang QY, Jin ZX. Tannic Acid-Based


Multifunctional Hydrogels with Facile Adjustable Adhesion and Cohesion Contributed by Polyphenol Supramolecular Chemistry. ACS Omega. 2017;2:6668–76. Article  CAS  PubMed  PubMed Central 


Google Scholar  * North MA, Del Grosso CA, Wilker JJ. High Strength Underwater Bonding with Polymer Mimics of Mussel Adhesive Proteins. ACS Appl Mater Interfaces. 2017;9:7866–72. Article 


CAS  PubMed  Google Scholar  * Zhan K, Kim C, Sung K, Ejima H, Yoshie N. Tunicate-Inspired Gallol Polymers for Underwater Adhesive: A Comparative Study of Catechol and Gallol.


Biomacromolecules 2017;18:2959–66. Article  CAS  PubMed  Google Scholar  * Sha X, Zhang C, Qi M, Zheng L, Cai B, Chen F, et al. Mussel-Inspired Alternating Copolymer as a High-Performance


Adhesive Material Both at Dry and Under-Seawater Conditions. Macromol Rapid Commun. 2020;41:2000055. Article  CAS  Google Scholar  * Li A, Mu Y, Jiang W, Wan X. A mussel-inspired adhesive


with stronger bonding strength under underwater conditions than under dry conditions. Chem Commun. 2015;51:9117–20. Article  CAS  Google Scholar  * Mu Y, Wu X, Pei D, Wu Z, Zhang C, Zhou D,


et al. Contribution of the Polarity of Mussel-Inspired Adhesives in the Realization of Strong Underwater Bonding. ACS Biomater Sci Eng. 2017;3:3133–40. Article  CAS  PubMed  Google Scholar 


* Kim S, Yoo HY, Huang J, Lee Y, Park S, Park Y, et al. Salt Triggers the Simple Coacervation of an Underwater Adhesive When Cations Meet Aromatic π Electrons in Seawater. ACS Nano.


2017;11:6764–72. Article  CAS  PubMed  Google Scholar  * Cui C, Gu R, Wu T, Yuan Z, Fan C, Yao Y, et al. Zwitterion-Initiated Spontaneously Polymerized Super Adhesive Showing Real-Time


Deployable and Long-Term High-Strength Adhesion against Various Harsh Environments. Adv Funct Mater. 2022;32:2109144. Article  CAS  Google Scholar  * Peng Q, Wu Q, Chen J, Wang T, Wu M, Yang


D, et al. Coacervate-Based Instant and Repeatable Underwater Adhesive with Anticancer and Antibacterial Properties. ACS Appl Mater Interfaces. 2021;13:48239–51. Article  CAS  PubMed  Google


Scholar  * Niu W, Zhu J, Zhang W, Liu X. Simply Formulated Dry Pressure-Sensitive Adhesives for Substrate-Independent Underwater Adhesion. ACS Mater Lett. 2022;4:410–7. Article  CAS  Google


Scholar  * Yu Z, Wu P. Underwater Communication and Optical Camouflage Ionogels. Adv Mater. 2021;33:2008479. Article  CAS  Google Scholar  * Han L, Wang M, Prieto-López LO, Deng X, Cui J.


Self-Hydrophobization in a Dynamic Hydrogel for Creating Nonspecific Repeatable Underwater Adhesion. Adv Funct Mater. 2020;30:1907064. Article  CAS  Google Scholar  * Liu X, Zhang Q, Duan L,


Gao G. Tough Adhesion of Nucleobase-Tackifed Gels in Diverse Solvents. Adv Funct Mater. 2019;29:1900450. Article  Google Scholar  * Liu X, Zhang Q, Duan L, Gao G. Bioinspired


Nucleobase-Driven Nonswellable Adhesive and Tough Gel with Excellent Underwater Adhesion. ACS Appl Mater Interfaces. 2019;11:6644–51. Article  CAS  PubMed  Google Scholar  * Zhang Z, Guo L,


Hao J. Emulsion-Based Organohydrogels with Switchable Wettability and Underwater Adhesion toward Durable and Ecofriendly Marine Antifouling Coatings. ACS Appl Polym Mater. 2021;3:3060–70.


Article  CAS  Google Scholar  * Waite JH. Mussel adhesion—essential footwork. J Exp Biol. 2017;220:517–30. Article  PubMed  PubMed Central  Google Scholar  * Rocha M, Antas P, Castro LFC,


Campos A, Vasconcelos V, Pereira F, et al. Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). Mar Biotechnol.


2018;21:38–51. Article  Google Scholar  * Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature


2016;531:118–21. Article  CAS  PubMed  PubMed Central  Google Scholar  * DeStefano AJ, Segalman RA, Davidson EC. Where Biology and Traditional Polymers Meet: The Potential of Associating


Sequence-Defined Polymers for Materials Science. JACS Au. 2021;1:1556–71. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fan HL, Cai YR, Gong JP. Facile Tuning of Hydrogel


Properties by Manipulating Cationic-Aromatic Monomer Sequences. Sci China Chem. 2021;64:1560–8. Article  CAS  Google Scholar  * Baik S, Kim J, Lee HJ, Lee TH, Pang C. Highly Adaptable and


Biocompatible Octopus-Like Adhesive Patches with Meniscus-Controlled Unfoldable 3D Microtips for Underwater Surface and Hairy Skin. Adv Sci. 2018;5:1800100. Article  Google Scholar  * Wang


Y, Kang V, Arzt E, Federle W, Hensel R. Strong Wet and Dry Adhesion by Cupped Microstructures. ACS Appl Mater Interfaces. 2019;11:26483–90. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zheng H, Li J, Zhou Y, Zhang C, Xu W, Deng Y, et al. Electrically switched underwater capillary adhesion. Nat Commun. 2022;13:4584. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Frey ST, Haque ABMT, Tutika R, Krotz EV, Lee C, Haverkamp CB, et al. Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion. Sci Adv.


2022;8:eabq1905. Article  PubMed  PubMed Central  Google Scholar  * Costa M, Viana G, da Silva LFM, Campilho RDSG. Environmental effect on the fatigue degradation of adhesive joints: A


review. J Adhes. 2017;93:127–46. Article  CAS  Google Scholar  * Dickson AG, Goyet C. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea


water. Version 2. United States; ORNL/CDIAC-74, Carbon Dioxide Inf. and Anal. Cent., Oak Ridge, Natl. Lab., Oak Ridge, Tenn; 1994. Available at http://cdiac.ornl.gov/oceans/handbook.html. *


Yan Y, Huang J, Qiu X, Zhuang D, Liu H, Huang C, et al. A Strong Underwater Adhesive that Totally Cured in Water. Chem Eng J. 2021;431:133460. Article  Google Scholar  * Li Y, Huang X, Xu Y,


Ma C, Cai L, Zhang J, et al. A bio-inspired multifunctional soy protein-based material: From strong underwater adhesion to 3D printing. Chem Eng J. 2021;430:133017. Article  Google Scholar


  * Das S, Vasilyev G, Martin P, Zussman E. Bioinspired Cationic-Aromatic Copolymer for Strong and Reversible Underwater Adhesion. ACS Appl Mater Interfaces. 2022;14:26287–94. Article  CAS 


PubMed  Google Scholar  * Cai C, Zhu H, Chen Y, Chen C, Li H, Yang Z, et al. Conductive nerve guide conduits based on wet-adhesive hydrogel to accelerate peripheral nerve repair. Appl Mater


Today. 2022;27:101491. Article  Google Scholar  * Sun C, Luo J, Jia T, Hou C, Li Y, Zhang Q, et al. Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric


monitoring. Chem Eng J. 2022;431:134012. Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This research was supported by JSPS KAKENHI (Grant Numbers JP21K14676) and the


Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) established by the World Premier International Research Initiative (WPI), MEXT, Japan. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan Hailong Fan Authors * Hailong Fan View author publications You can also


search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Hailong Fan. ETHICS DECLARATIONS CONFLICT OF INTEREST The author declares no competing interests.


ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer


Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author


self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Fan, H. Getting glued in the sea. _Polym J_ 55, 653–664 (2023). https://doi.org/10.1038/s41428-023-00769-6 Download citation * Received: 16 January 2023 * Revised: 06


February 2023 * Accepted: 07 February 2023 * Published: 03 March 2023 * Issue Date: June 2023 * DOI: https://doi.org/10.1038/s41428-023-00769-6 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative