Targeting menin disrupts the kmt2a/b and polycomb balance to paradoxically activate bivalent genes

Targeting menin disrupts the kmt2a/b and polycomb balance to paradoxically activate bivalent genes

Play all audios:

Loading...

ABSTRACT Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By


coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR–Cas9 screens, we identify specific roles for MTF2–PRC2.1, PCGF1–PRC1.1 and Menin–KMT2A/B


complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent


genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and


opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating


gene activation. This functional partitioning of Menin–KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PHF6


COOPERATES WITH SWI/SNF COMPLEXES TO FACILITATE TRANSCRIPTIONAL PROGRESSION Article Open access 24 August 2024 GENOMIC PROFILING OF THE TRANSCRIPTION FACTOR ZFP148 AND ITS IMPACT ON THE P53


PATHWAY Article Open access 25 August 2020 BAHCC1 BINDS H3K27ME3 VIA A CONSERVED BAH MODULE TO MEDIATE GENE SILENCING AND ONCOGENESIS Article 02 November 2020 DATA AVAILABILITY ChIP–seq,


RNA-seq, CUT&Tag and CUT&RUN data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under the accession code GSE181829. ChIP–seq data


from the hESC H9 line were used from GEO accession nos GSE96336 and GSE96353, EZH2-null H9 hESC RNAs-seq data were from GEO accession no. GSE76626 and human induced pluripotent stem cell


line iPS-20b ChIP–seq data from GEO accession nos GSM772844 and GSM772847. Source data are provided with this paper. All other data supporting the findings of this study are available from


the corresponding authors on reasonable request. REFERENCES * Kuroda, M. I., Kang, H., De, S. & Kassis, J. A. Dynamic competition of polycomb and trithorax in transcriptional


programming. _Annu. Rev. Biochem._ 89, 235–253 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yu, J. R., Lee, C. H., Oksuz, O., Stafford, J. M. & Reinberg, D. PRC2 is


high maintenance. _Genes Dev._ 33, 903–935 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hughes, A. L., Kelley, J. R. & Klose, R. J. Understanding the interplay between


CpG island-associated gene promoters and H3K4 methylation. _Biochim. Biophys. Acta Gene Regul. Mech._ 1863, 194567 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cenik, B.


K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. _Nat. Rev. Genet._ 22, 38–58 (2021). Article  CAS  PubMed  Google Scholar  * Laugesen, A., Hojfeldt, J. W.


& Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. _Mol. Cell_ 74, 8–18 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bracken, A. P.,


Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and polycomb in chromatin regulation and cancer. _Genes Dev._ 33, 936–959 (2019). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. _Cell_ 125, 315–326 (2006). Article 


CAS  PubMed  Google Scholar  * Azuara, V. et al. Chromatin signatures of pluripotent cell lines. _Nat. Cell Biol._ 8, 532–538 (2006). Article  CAS  PubMed  Google Scholar  * Mikkelsen, T. S.


et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. _Nature_ 448, 553–560 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cao, R. et al.


Role of histone H3 lysine 27 methylation in polycomb-group silencing. _Science_ 298, 1039–1043 (2002). Article  CAS  PubMed  Google Scholar  * Margueron, R. et al. Role of the polycomb


protein EED in the propagation of repressive histone marks. _Nature_ 461, 762–767 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuzmichev, A., Nishioka, K.,


Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. _Genes Dev._


16, 2893–2905 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conway, E. et al. A family of vertebrate-specific polycombs encoded by the _LCOR_/_LCORL_ genes balance PRC2


subtype activities. _Mol. Cell_ 70, 408–421 (2018). Article  CAS  PubMed  Google Scholar  * Hojfeldt, J. W. et al. Non-core subunits of the PRC2 complex are collectively required for its


target-site specificity. _Mol. Cell_ 76, 423–436 (2019). Article  PubMed  Google Scholar  * Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. _Mol. Cell_ 70,


1149–1162 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hauri, S. et al. A high-density map for navigating the human polycomb complexome. _Cell Rep._ 17, 583–595 (2016).


Article  CAS  PubMed  Google Scholar  * Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. _Mol. Cell_ 45, 344–356 (2012). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of polycomb complexes in


mouse embryonic stem cells. _Cell Rep._ 3, 60–69 (2013). Article  CAS  PubMed  Google Scholar  * Fursova, N. A. et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene


repression. _Mol. Cell_ 74, 1020–1036 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2


recruitment and polycomb domain formation. _Cell_ 157, 1445–1459 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scelfo, A. et al. Functional landscape of PCGF proteins


reveals both RING1A/B-dependent- and RING1A/B-independent-specific activities. _Mol. Cell_ 74, 1037–1052 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, D. et al. The


Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. _Nat. Struct. Mol. Biol._ 20, 1093–1097 (2013). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Denissov, S. et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. _Development_ 141, 526–537 (2014). Article 


CAS  PubMed  Google Scholar  * Comet, I., Riising, E. M., Leblanc, B. & Helin, K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. _Nat. Rev. Cancer_ 16,


803–810 (2016). Article  CAS  PubMed  Google Scholar  * Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer.


_Nat. Rev. Mol. Cell Biol._ 20, 573–589 (2019). Article  CAS  PubMed  Google Scholar  * Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. _Science_


355, 1147–1152 (2017). Article  CAS  PubMed  Google Scholar  * Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and


enables immune evasion in cancer. _Cancer Cell_ 36, 385–401 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fan, H. et al. A conserved BAH module within mammalian BAHD1


connects H3K27me3 to polycomb gene silencing. _Nucleic Acids Res._ 49, 4441–4455 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, D. et al. The BAH domain of BAHD1 is a


histone H3K27me3 reader. _Protein Cell_ 7, 222–226 (2016). Article  PubMed  PubMed Central  Google Scholar  * Bierne, H. et al. Human BAHD1 promotes heterochromatic gene silencing. _Proc.


Natl Acad. Sci. USA_ 106, 13826–13831 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boehm, J. S. et al. Cancer research needs a better map. _Nature_ 589, 514–516 (2021).


Article  CAS  PubMed  Google Scholar  * Tsherniak, A. et al. Defining a cancer dependency map. _Cell_ 170, 564–576 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Grijzenhout, A. et al. Functional analysis of AEBP2, a PRC2 polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs. _Development_ 143, 2716–2723 (2016). CAS 


PubMed  PubMed Central  Google Scholar  * Chen, S., Jiao, L., Liu, X., Yang, X. & Liu, X. A dimeric structural scaffold for PRC2–PCL targeting to CpG island chromatin. _Mol. Cell_ 77,


1265–1278 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Youmans, D. T., Gooding, A. R., Dowell, R. D. & Cech, T. R. Competition between PRC2.1 and 2.2 subcomplexes


regulates PRC2 chromatin occupancy in human stem cells. _Mol. Cell_ 81, 488–501 (2021). Article  CAS  PubMed  Google Scholar  * Junco, S. E. et al. Structure of the polycomb group protein


PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. _Structure_ 21, 665–671 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Agarwal, S. K. et


al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. _Cell_ 96, 143–152 (1999). Article  CAS  PubMed  Google Scholar  * Huang, J. et al. The


same pocket in menin binds both MLL and JUND but has opposite effects on transcription. _Nature_ 482, 542–546 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yokoyama, A. et


al. The Menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. _Cell_ 123, 207–218 (2005). Article  CAS  PubMed  Google Scholar  * Yokoyama, A.


& Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. _Cancer Cell_ 14, 36–46 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Borkin, D. et al. Pharmacologic inhibition of the Menin–MLL interaction blocks progression of MLL leukemia in vivo. _Cancer Cell_ 27, 589–602 (2015). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Krivtsov, A. V. et al. A Menin–MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. _Cancer Cell_ 36, 660–673


(2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, L. et al. CRISPR–Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. _J. Clin. Invest._ 128, 446–462


(2018). Article  PubMed  Google Scholar  * George, J. et al. Comprehensive genomic profiles of small cell lung cancer. _Nature_ 524, 47–53 (2015). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Sutherland, K. D. et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. _Cancer Cell_ 19, 754–764


(2011). Article  CAS  PubMed  Google Scholar  * Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase


inhibition. _Cancer Cell_ 31, 270–285 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with


EZH2-activating mutations. _Nature_ 492, 108–112 (2012). Article  CAS  PubMed  Google Scholar  * Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer


via dsRNA including endogenous retroviruses. _Cell_ 162, 974–986 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roulois, D. et al. DNA-demethylating agents target


colorectal cancer cells by inducing viral mimicry by endogenous transcripts. _Cell_ 162, 961–973 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sheng, W. et al. LSD1


ablation stimulates anti-tumor immunity and enables checkpoint blockade. _Cell_ 174, 549–563 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Durbin, J. E., Hackenmiller, R.,


Simon, M. C. & Levy, D. E. Targeted disruption of the mouse _Stat1_ gene results in compromised innate immunity to viral disease. _Cell_ 84, 443–450 (1996). Article  CAS  PubMed  Google


Scholar  * Heppner, C. et al. The tumor suppressor protein menin interacts with NF-κB proteins and inhibits NF-κB-mediated transactivation. _Oncogene_ 20, 4917–4925 (2001). Article  CAS 


PubMed  Google Scholar  * Mas, G. et al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. _Nat. Genet._ 50, 1452–1462 (2018). Article  CAS  PubMed  Google


Scholar  * Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. _Cell Stem Cell_ 1, 299–312 (2007). Article  CAS  PubMed 


Google Scholar  * Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. _Cell_ 153, 1149–1163 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase


activity. _EMBO J._ 23, 4061–4071 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in


maintaining stem cell identity and executing pluripotency. _Mol. Cell_ 32, 491–502 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chamberlain, S. J., Yee, D. & Magnuson,


T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. _Stem Cells_ 26, 1496–1505 (2008). Article  CAS  PubMed  Google Scholar  * Pasini, D.,


Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. _Mol. Cell. Biol._ 27, 3769–3779 (2007).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Collinson, A. et al. Deletion of the polycomb-group protein EZH2 leads to compromised self-renewal and differentiation defects in


human embryonic stem cells. _Cell Rep._ 17, 2700–2714 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vlahos, K. et al. Generation of iPSC lines from peripheral blood


mononuclear cells from 5 healthy adults. _Stem Cell Res._ 34, 101380 (2019). Article  CAS  PubMed  Google Scholar  * Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency


to human bone, heart, and other mesoderm cell types. _Cell_ 166, 451–467 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Skelton, R. J. P., Kamp, T. J., Elliott, D. A. &


Ardehali, R. Biomarkers of human pluripotent stem cell-derived cardiac lineages. _Trends Mol. Med._ 23, 651–668 (2017). Article  CAS  PubMed  Google Scholar  * Brown, D. A. et al. The SET1


complex selects actively transcribed target genes via multivalent interaction with CpG island chromatin. _Cell Rep._ 20, 2313–2327 (2017). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wu, M. et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. _Mol. Cell. Biol._ 28, 7337–7344 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Stafford, J. M. et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. _Sci. Adv._ 4, eaau5935 (2018). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma


tumorigenesis. _Nat. Commun._ 10, 1262 (2019). Article  PubMed  PubMed Central  Google Scholar  * Kobayashi, K. S. & van den Elsen, P. J. NLRC5: a key regulator of MHC class I-dependent


immune responses. _Nat. Rev. Immunol._ 12, 813–820 (2012). Article  CAS  PubMed  Google Scholar  * Farcas, A. M. et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of


CpG islands. _eLife_ 1, e00205 (2012). Article  PubMed  PubMed Central  Google Scholar  * Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG


islands and regulates H2A ubiquitylation. _Mol. Cell_ 49, 1134–1146 (2013). Article  CAS  PubMed  Google Scholar  * Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands.


_Nature_ 549, 287–291 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hojfeldt, J. W. et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2.


_Nat. Struct. Mol. Biol._ 25, 225–232 (2018). Article  PubMed  PubMed Central  Google Scholar  * Perino, M. et al. MTF2 recruits polycomb repressive complex 2 by helical-shape-selective DNA


binding. _Nat. Genet._ 50, 1002–1010 (2018). Article  CAS  Google Scholar  * Tamburri, S. et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional


repression. _Mol. Cell_ 77, 840–856 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blackledge, N. P. et al. PRC1 catalytic activity is central to polycomb system function.


_Mol. Cell_ 77, 857–874 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, D. et al. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ


cell specification. _Mol. Cell_ 65, 460–475 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * van Nuland, R. et al. Quantitative dissection and stoichiometry determination of


the human SET1/MLL histone methyltransferase complexes. _Mol. Cell. Biol._ 33, 2067–2077 (2013). Article  PubMed  PubMed Central  Google Scholar  * Chen, Y. et al. Distinct pathways affected


by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia. _Exp. Hematol._ 69, 37–42 (2019). Article  CAS  PubMed  Google Scholar  * Xu, J. et al. MLL1 and MLL1 fusion proteins


have distinct functions in regulating leukemic transcription program. _Cell Discov._ 2, 16008 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mendenhall, E. M. et al. GC-rich


sequence elements recruit PRC2 in mammalian ES cells. _PLoS Genet._ 6, e1001244 (2010). Article  PubMed  PubMed Central  Google Scholar  * Thomson, J. P. et al. CpG islands influence


chromatin structure via the CpG-binding protein Cfp1. _Nature_ 464, 1082–1086 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Singh, A. M. et al. Cell-cycle control of


bivalent epigenetic domains regulates the exit from pluripotency. _Stem Cell Rep._ 5, 323–336 (2015). Article  CAS  Google Scholar  * Konig, R. et al. A probability-based approach for the


analysis of large-scale RNAi screens. _Nat. Methods_ 4, 847–849 (2007). Article  PubMed  Google Scholar  * Zhang, J. et al. An integrative ENCODE resource for cancer genomics. _Nat. Commun._


11, 3696 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8


locus. _Mol. Cell_ 13, 587–597 (2004). Article  CAS  PubMed  Google Scholar  * Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric


glioblastoma. _Science_ 340, 857–861 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Diebold, S. S., Cotten, M., Koch, N. & Zenke, M. MHC class II presentation of


endogenously expressed antigens by transfected dendritic cells. _Gene Ther._ 8, 487–493 (2001). Article  CAS  PubMed  Google Scholar  * Morgens, D. W. et al. Genome-scale measurement of


off-target activity using Cas9 toxicity in high-throughput screens. _Nat. Commun._ 8, 15178 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Martin, M. CUTADAPT removes


adapter sequences from high-throughput sequencing reads. _EMBnet.journal_ https://doi.org/10.14806/ej.17.1.200 (2011). * Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with


Bowtie 2. _Nat. Methods_ 9, 357–359 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera Mdel, C. & Yusa, K. Genome-wide


recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. _Nat. Biotechnol._ 32, 267–273 (2014). Article  CAS  PubMed  Google Scholar  * Aubrey, B. J. et al.


An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. _Cell Rep._ 10, 1422–1432 (2015). Article  CAS  PubMed


  Google Scholar  * Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. _Nat. Biotechnol._ 37,


907–915 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data.


_Bioinformatics_ 31, 166–169 (2015). Article  CAS  PubMed  Google Scholar  * Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with


DESeq2. _Genome Biol._ 15, 550 (2014). Article  PubMed  PubMed Central  Google Scholar  * Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single


cells. _Nat. Commun._ 10, 1930 (2019). Article  PubMed  PubMed Central  Google Scholar  * Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory


variation. _Nature_ 523, 486–490 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution


mapping of DNA binding sites. _eLife_ 6, e21856 (2017). Article  PubMed  PubMed Central  Google Scholar  * Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.


Preprint at _arXiv_ https://doi.org/10.48550/arXiv.1303.3997 (2013). * Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). _Genome Biol._ 9, R137 (2008). Article  PubMed  PubMed


Central  Google Scholar  * Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. _Nucleic Acids Res._ 42,


W187–W191 (2014). Article  PubMed  PubMed Central  Google Scholar  * Kurtenbach, S. & William Harbour, J. SparK: a Publication-quality NGS visualization tool. Preprint at _bioRxiv_


https://doi.org/10.1101/845529 (2019). Download references ACKNOWLEDGEMENTS We thank the Peter MacCallum Cancer Centre Molecular Genomics Core and the flow cytometry facility. We thank the


following funders for fellowship, scholarship and grant support: Snow Medical Research Foundation Fellowship (M.L.B. and M.E.-M.), Cancer Research UK Clinician Scientist Fellowship


C53779/A20097 and NHMRC Investigator Grant 1196598 (M.L.B.), Sir Edward Dunlop Fellowship, Cancer Council of Victoria, NHMRC Investigator Grant 1196749 and Howard Hughes Medical Institute


International Research Scholarship 55008729 (M.A.D.), CSL Centenary Fellowship and NHMRC Investigator Grant 1196755 (S.-J.D.), Peter and Julie Alston Centenary fellowship (K.D.S.), Wellcome


Trust Principal Research Fellowship 101835/Z/13/Z (P.J.L.), Peter MacCallum Postgraduate Scholarship (C.E.S.), NHMRC Postgraduate Scholarship (K.L.C.), Maddie Riewoldt’s Vision 064728


(Y.-C.C.), Victorian Cancer Agency (E.Y.N.L.), VCA Mid-Career Fellowship MCRF19033 (D.J.G.), CSL Centenary Fellowship (S.-J.D.) and NHMRC grants 1164054 and 2010275 (M.L.B.), 1085015 and


1106444 (M.A.D.), and 1128984 (M.A.D. and S.-J.D.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Schematics in


Fig. 1a,d, Fig. 4b and Extended Data Fig. 10a were created with BioRender.com. AUTHOR INFORMATION Author notes * These authors contributed equally: Marian L. Burr, Mark A. Dawson. AUTHORS


AND AFFILIATIONS * Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia Christina E. Sparbier, Andrea Gillespie, Juliana Gomez, Nishi Kumari, Ali


Motazedian, Kah Lok Chan, Charles C. Bell, Omer Gilan, Yih-Chih Chan, Melanie A. Eckersley-Maslin, Sarah-Jane Dawson, Enid Y. N. Lam, Marian L. Burr & Mark A. Dawson * Sir Peter


MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia Christina E. Sparbier, Ali Motazedian, Kah Lok Chan, Charles C. Bell, Yih-Chih Chan, Melanie A.


Eckersley-Maslin, Sarah-Jane Dawson, Enid Y. N. Lam, Marian L. Burr & Mark A. Dawson * The John Curtin School of Medical Research, The Australian National University, Canberra,


Australian Capital Territory, Australia Juliana Gomez, Sarah Popp & Marian L. Burr * Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital,


Melbourne, Victoria, Australia Kah Lok Chan & Mark A. Dawson * Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia Omer Gilan * Department of


Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia Daniel J. Gough * Centre for Cancer Research, Hudson


Institute of Medical Research, Clayton, Victoria, Australia Daniel J. Gough * Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia Melanie A.


Eckersley-Maslin * Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia Sarah-Jane Dawson & Mark A. Dawson * Cambridge Institute of Therapeutic Immunology


and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK Paul J. Lehner * ACRF Cancer Biology and Stem Cells Division, Walter and Eliza Hall


Institute of Medical Research, Parkville, Victoria, Australia Kate D. Sutherland * Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia Kate D.


Sutherland * Section of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA Patricia Ernst *


Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA Patricia Ernst * Syndax Pharmaceuticals, Waltham, MA, USA Gerard M. McGeehan * Department of Anatomical


Pathology, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia Marian L. Burr Authors * Christina E. Sparbier View author publications You can also


search for this author inPubMed Google Scholar * Andrea Gillespie View author publications You can also search for this author inPubMed Google Scholar * Juliana Gomez View author


publications You can also search for this author inPubMed Google Scholar * Nishi Kumari View author publications You can also search for this author inPubMed Google Scholar * Ali Motazedian


View author publications You can also search for this author inPubMed Google Scholar * Kah Lok Chan View author publications You can also search for this author inPubMed Google Scholar *


Charles C. Bell View author publications You can also search for this author inPubMed Google Scholar * Omer Gilan View author publications You can also search for this author inPubMed Google


Scholar * Yih-Chih Chan View author publications You can also search for this author inPubMed Google Scholar * Sarah Popp View author publications You can also search for this author


inPubMed Google Scholar * Daniel J. Gough View author publications You can also search for this author inPubMed Google Scholar * Melanie A. Eckersley-Maslin View author publications You can


also search for this author inPubMed Google Scholar * Sarah-Jane Dawson View author publications You can also search for this author inPubMed Google Scholar * Paul J. Lehner View author


publications You can also search for this author inPubMed Google Scholar * Kate D. Sutherland View author publications You can also search for this author inPubMed Google Scholar * Patricia


Ernst View author publications You can also search for this author inPubMed Google Scholar * Gerard M. McGeehan View author publications You can also search for this author inPubMed Google


Scholar * Enid Y. N. Lam View author publications You can also search for this author inPubMed Google Scholar * Marian L. Burr View author publications You can also search for this author


inPubMed Google Scholar * Mark A. Dawson View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.L.B. and M.A.D. conceived, designed and


supervised the research and wrote the manuscript. C.E.S. designed the research, conducted experiments, analysed data and helped write the manuscript. J.G., N.K., K.L.C., A.M., C.C.B., O.G.


and S.P. conducted experiments, analysed data and provided expertise. C.E.S. conducted the CRISPR screens. A.G. and E.Y.N.L. led the analysis of the genomic data and CRISPR screens with


contributions from Y.-C.C. K.D.S., D.J.G., M.A.E.-M., S.-J.D., P.J.L., P.E. and G.M.M. provided critical expertise and/or reagents and contributed to manuscript preparation. CORRESPONDING


AUTHORS Correspondence to Marian L. Burr or Mark A. Dawson. ETHICS DECLARATIONS COMPETING INTERESTS M.A.D. has been a member of advisory boards for GSK, CTX CRC, Storm Therapeutics, Celgene


and Cambridge Epigenetix. The Dawson Laboratory is a recipient of grant funding through the emerging science fund administered through Pfizer. S.J.D. has been a member of advisory boards for


Adela and Inivata. P.E. owns Amgen stocks (less than 5% value of the company) and has undertaken previous consulting for Servier (less than $10,000). G.M.M. is employed by Syndax


Pharmaceuticals. The remaining authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Cell Biology_ thanks Yali Dou and the other, anonymous, reviewer(s) for


their contribution to the peer review of this work. Peer reviewer reports are available. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 MHC-I GENES HARBOUR BIVALENT H3K4ME3 AND H3K27ME3 MODIFICATIONS. A, Genomic snapshots of MHC-I


genes showing H3K4me3 and H3K27me3 CUT&Tag in K-562 and ChIP–seq in neuroblastoma KELLY cell lines. The K-562 tracks are also shown in the control cells in Fig. 2h and H3K27me3 control


cells in Fig. 6f. B,C, Cell surface MHC-I in K-562 (left) and KELLY (right) cells following treatment with EPZ-011989 and (C) ± 10 ng ml−1 IFN-γ (48 h K-562; 24 h KELLY). D, Genomic


snapshots of MHC-I genes showing ChIP–seq for H3K4me3, H3K27me3 and H3K27ac in KELLY cells treated with ethanol (control) or EPZ-011989 ± IFN-γ. E,F, ChIP reChIP–seq of single H3K27me3,


single H3K4me3 and reChIP (H3K27me3 and H3K4me3) in K-562 cells. E, Genomic snapshots of bivalent MHC-I genes. F, Heatmaps show bivalent genes −3 kb TSS/+3 kb TES, with genomic regions


ordered by H3K27me3 read density in the single H3K27me3 ChIP sample. B,C, Representative plots from three experiments (Supplementary Fig. 3). Source data EXTENDED DATA FIG. 2 GENOME-WIDE


CRISPR–CAS9 SCREEN IDENTIFIES REGULATORS OF MHC-I EXPRESSION. A, Cell surface MHC-I, pan-HLA-A,B,C (top)- and HLA-B (bottom)-specific antibodies in K-562 Cas9 cells treated with the


indicated IFN-γ doses for 24 h. B, K-562 cells stably expressing Cas9 were mutagenized by infection with a pooled lentiviral sgRNA library and treated with 1 ng ml−1 IFN-γ for 24 h prior to


FACS sorting. Rare MHC-I high cells were enriched by two successive rounds of FACS sorting for mCherry+ (containing sgRNA vector) MHC-I+ cells. FACS dot plots and histograms show MHC-I


expression in unsorted, post sort 1 and post sort 2 in K-562 Cas9 cells transduced with the CRIPSR sgRNA library and sorted with either pan-HLA-A,B,C (top)- or HLA-B (bottom)-specific


antibodies. C, Table depicting correlation between CRISPR gene-effect scores (Fig. 1e) for top-20 shared _EZH2_ and _EED_ co-dependent genes calculated from combined CRISPR survival screens


in 990 cancer cell lines in Cancer Dependency Map (https://depmap.org/portal/)31,32. Table indicates Pearson’s correlation coefficients. D,E, Immunoblots of K-562 Cas9 cells transduced with


control and _MTF2_ (D) or _AEBP2_ (E) sgRNA. F, H3K4me3 and H3K27me3 CUT&Tag. Genomic snapshots of bivalent MHC-I genes in K-562 cells transduced with control, _MTF2_ and _AEBP2_ sgRNA.


The H3K4me3 control tracks are the same control tracks in Fig. 7c. G, Cell surface MHC-I in K-562 Cas9 cells transduced with control or _BAHD1-_specific sgRNAs and treated with 10 ng ml−1


IFN-γ for 48 h. Representative plots from three experiments (Supplementary Fig. 3). H, Knockout scores of individual sgRNA targeting _BAHD1_ measured using Synthego Performance Analysis,


Interference of CRISPR editing (ICE) Analysis. Source data EXTENDED DATA FIG. 3 LOSS OF PRC1 DRIVES DEREPRESSION OF BIVALENT GENES. A, Immunoblot of K-562 Cas9, _PCGF1_-KO and _EED_-KO cells


± 10 ng ml−1 IFN-γ (40 h). B,C, Cell surface MHC-I in K-562 Cas9 cells transduced with either control or _PCGF1_ sgRNA. C, Mean percentage of MHC-I expression from three experiments,


indicated by points. Unpaired two-tailed Student’s _t_-test, _P_ = 0.0295. D, qRT-PCR for MHC-I genes in K-562 Cas9 cells transduced with control or _PCGF1_ sgRNA. Bars indicate mean ± s.d.


of technical triplicates from a representative experiment. E, Cell surface MHC-I in _EED_-KO cells transduced with control or _MTF2_ sgRNA. Representative plot from three experiments


(Supplementary Fig. 3). F, Immunoblot of K-562 Cas9 and _EED_-KO cells transduced with control and _PCGF1_ sgRNA. G,H, Cell surface MHC-I in K-562 Cas9 cells transduced with _RING1A_ and/or


_RING1B_ sgRNA, following treatment with 10 ng ml−1 IFN-γ for 36 h. H, Bars show mean fold change in MFI from 3–5 experiments, indicated by points. Unpaired two-tailed Student’s _t_-test,


_P_ values are indicated. I, Immunoblot of K-562 Cas9 cells transduced with the indicated sgRNA. J, Genomic snapshots of bivalent MHC-I genes showing H3K4me3, H3K27me3 and H2AK119Ub


CUT&Tag in K-562 Cas9 (control), _EED_-KO and _PCGF1-_KO cells. The H3K4me3 and H3K27me3 control tracks are the same control tracks in Fig. 6f. K, H2AK119Ub CUT&Tag in K-562 cells


transduced with control or _MTF2_ sgRNA. Heatmaps show bivalent genes −3kb TSS/+3 kb TES. Genomic regions are ordered by H2AK119Ub read density in the control sample. Source data EXTENDED


DATA FIG. 4 DEPLETION OF MENIN OR LEDGF ENHANCES BASAL AND IFN-Γ-INDUCED BIVALENT MHC-I GENE EXPRESSION. A,B, Cell surface MHC-I in K-562 Cas9 cells transduced with control, _MEN1_ or


_PSIP1_ sgRNA. B, Bars show mean percentage of MHC-I expression from three experiments, indicated by points. Unpaired two-tailed Student’s _t_-test, significant changes are indicated, _P_ = 


0.0356. C, qRT-PCR for MHC-I genes in K-562 Cas9 cells transduced with control or _MEN1_ sgRNA. Bars indicate mean ± s.d. of technical triplicates from a representative experiment. D,


Immunoblot of K-562 Cas9, _MEN1_-KO and _PSIP1_-KO cells ± 10 ng ml−1 IFN-γ for 40 h. E, Cell surface MHC-I in K-562 Cas9 cells transduced with control or the indicated sgRNA targeting


_MEN1_. F,G, Immunoblots of K-562 Cas9 cells transduced with control sgRNA or sgRNA targeting _MEN1_ (F), _MEN1-_KO cells ± _MEN1_ cDNA (G). H,I, JunD is not required for enhanced MHC-I


expression following _MEN1_ KO. K-562 Cas9 and _MEN1-_KO cells transduced with control or _JunD_ sgRNA and analysed by flow cytometry following treatment with 10 ng ml−1 IFN-γ for 48 h (H)


and immunoblot (I). H, Representative plots from three experiments (Supplementary Fig. 3). Source data EXTENDED DATA FIG. 5 PHARMACOLOGICAL TARGETING OF MENIN–KMT2A/B AND PRC2 SIMILARLY


AUGMENT IFN-Γ-INDUCED MHC-I EXPRESSION IN MHC-ILOW CANCERS AND ENHANCE T CELL-MEDIATED KILLING. A, qRT-PCR analysis of K-562 cells treated ± 500 nM VTP50469. Bars indicate the mean ± s.d. of


technical triplicates. B, MI-503, a chemically distinct inhibitor of the Menin–MLL interaction, also enhanced IFN-γ induced MHC-I expression. Cell surface MHC-I in K-562 Cas9 cells


pre-treated with 500 nM MI-503 and 10 ng ml−1 IFN-γ (48 h). Representative plot from three experiments (Supplementary Fig. 3). C, Cell surface MHC-I in cells treated with DMSO or 3 µM


EPZ-011989 and 10 ng ml−1 IFN-γ (24 h SCLC, 40 h KELLY), (VTP50469 treatment: Fig. 4a). Representative plots from independent experiments (_n_ = 2 SCLC, _n_ = 3 KELLY (Supplementary Fig.


3)). D, Cell surface MHC-I expression in SCLC cells treated with DMSO, 1 µM VTP50469 or 3 µM EPZ-011989 and 10 ng ml−1 IFN-γ for 24 h. Representative plots from two experiments


(Supplementary Fig. 3). E, Scatter plot indicating _MEN1_ and _EED_ CERES gene perturbation effects for neuroblastoma cell lines evaluated in combined CRISPR screens in DepMap (DepMap 21Q2


Public+Score, CERES (https://depmap.org/portal/)31,32. F, Flow cytometry analysis of RP-48-OVA cells pre-treated with DMSO or 1 µM VTP50469 and 10 ng ml−1 murine IFN-γ (24 h) prior to


co-culture with OVA antigen-specific OT-I T cells at the indicated effector:target (E:T) ratios. Bars indicate mean percent remaining mCherry+ (RP-48-OVA) cells compared with no T cell


control from three independent replicates, indicated by points. Unpaired two-tailed Student’s _t_-tests compared with the respective DMSO controls. Significant changes are indicated. G,


Cytometric Beads Array (CBA) assay for mIFN-γ following 24 h co-culture of RP-48-OVA cells pre-treated with DMSO or 1 µM VTP50469 and 10 ng ml−1 murine IFN-γ (24 h) prior to co-culture with


OVA antigen-specific OT-I T cells at a 2:1 (E:T) ratio. Bars show mean expression from 2–3 independent replicates, indicated by points. Unpaired two-tailed Student’s _t_-test, _P_ = 0.01. H,


Cell surface MHC-I in SPC-545-OVA cells pre-treated with DMSO, 1 µM VTP50469 and/or 3 µM EPZ-011989, and 1 ng ml−1 murine IFN-γ (24 h). Representative plot from two experiments


(Supplementary Fig. 3). I, CBA assay for mIFN-γ and TNF following 4 d of co-culture of pre-treated SPC-545-OVA cells (DMSO, 1 µM VTP50469 and/or 3 µM EPZ-011989 and 2 h 20 ng ml−1 mIFN-γ)


with OVA antigen-specific OT-I T cells at a 2:1 (E:T) ratio. Bars show mean expression from three independent replicates, indicated by points. Unpaired two-tailed Student’s _t_-test compared


with the respective DMSO + mIFN-γ controls. Significant changes are indicated. Source data EXTENDED DATA FIG. 6 TARGETING MENIN DRIVES EXPRESSION OF BIVALENT GENES INDEPENDENTLY OF IFN AND


NF-ΚB SIGNALLING. A,B, Immunoblot in K-562 _EED_-KO cells depleted of _MEN1_ and _PSIP1_ (A) or _PCGF1_ (B) and then transduced with the indicated sgRNA. C, Immunoblot in K-562 Cas9 and


_EED_-KO cells transduced with the indicated sgRNA and treated ± 10 ng ml−1 IFN-γ for 48 h. D–H, K-562 _EED_-KO cells depleted of _MEN1_, _PSIP1_ or _PCGF1_ and transduced with the indicated


sgRNA, analysed by flow cytometry (D,F), and immunoblot (E,G,H). I, Immunoblot of K-562 Cas9 and _EED_-KO cells transduced with the indicated sgRNA and treated ± 20 ng ml−1 TNF-α for 48 h.


J, Cell surface MHC-I expression in K-562 _EED_-KO cells transduced with control or _PCGF1_ sgRNA and treated ± 25 ng ml−1 IFN-γ for 24 h. D,F,J, Representative plots from three experiments


(Supplementary Fig. 3). Source data EXTENDED DATA FIG. 7 LOSS OF MENIN ALLEVIATES REPRESSION OF BIVALENT GENES. A, Volcano plot showing log2FC gene expression from RNA-seq data in K-562


cells expressing _MEN1_ sgRNA compared with control sgRNA. Selected MHC class I genes are labelled. Two-sided Wald test; _P_ values adjusted for multiple testing. B, Venn diagram depicting


overlap in genes downregulated (_P_adj < 0.05 and fold change > 2) after CRISPR deletion of _MEN1_, _PSIP1_ or _EED_. C, Venn diagrams depicting overlap in genes up- and downregulated


(_P_adj < 0.05 and fold change > 2) after CRISPR deletion of _MEN1_ or _PSIP1_, or 500 nM VTP50469 treatment. D, Pharmacological inhibition of Menin–KMT2A/B induces genome-wide


displacement of Menin from chromatin. Menin ChIP–seq in K-562 cells treated for 48 h with DMSO or 1 µM VTP50469. Average profile plots (top) and heatmaps (bottom) of Menin-occupied sites


−3kb TSS/+3 kb TES. Genomic regions are ordered by Menin occupancy in the control sample. E,F, Immunoblots of K-562 Cas9 (control), _MEN1_-KO, _PSIP1_-KO and _PCGF1-_KO cells. G, Genomic


snapshots of MHC-I genes from SUZ12 ChIP–seq data in K-562 Cas9 control and _MEN1_-KO cells. H, Genomic snapshots of H3K4me3, SUZ12 ChIP–seq and H3K27me3 CUT&Tag in K-562 Cas9 control


and _MEN1_-KO cells. Source data EXTENDED DATA FIG. 8 TARGETING MENIN POTENTIATES BIVALENT GENE DEREPRESSION IN HUMAN PLURIPOTENT STEM CELLS. A, RNA-seq in H9 hESCs treated with DMSO, 1 µM


VTP50469 and/or 3 µM EPZ-011989 for 5 d. Heatmap includes bivalent genes significantly up- or downregulated in combination Menin/EZH2 inhibitor-treated cells compared with DMSO control


(_P_adj < 0.05 and log2FC >1 or <−1). B,C, RNA-seq in wild-type (WT), EZH2-null (_EZH2_−/−) and EZH2-complemented EZH2-null (_EZH2_−/− + _EZH2_) H9 hESCs (GEO: GSE76626)60. B,


Boxplots include the top upregulated bivalent genes in combination with Menin + EZH2 inhibitor-treated H9 hESCs (log2FC > 4 compared with the DMSO control) and depict median log2FC in


expression in EZH2-null or EZH2-complemented H9 hESCs compared with the wild-type control60. Whiskers represent the minimum and maximum, the box represents the interquartile range and the


centre line represents the median. C, Heatmap shows log2FC in expression of selected germ layer-specific genes in either EZH2-null or EZH2-complemented H9 hESCs compared with the wild-type


control60. D, Heatmap shows log2FC in expression of selected germ layer-specific genes in H9 hESCs treated with 1 µM VTP50469 and/or 3 µM EPZ-011989 compared with the DMSO control. E,F,


ChIP–seq of H9 hESCs. Genomic snapshots showing data from KMT2A (E), and KMT2A, H3K4me3 (GEO: GSE96336) and H3K27me3 (GEO: GSE96353)84 (F). EXTENDED DATA FIG. 9 KMT2A/B IS REQUIRED FOR BASAL


MHC-I EXPRESSION. A, Cell surface MHC-I in K-562 Cas9 cells transduced with _KMT2A_ or _KMT2B_ sgRNA compared with control sgRNA and treated with 10 ng ml−1 IFN-γ for 48 h. Bars show mean


percentage of MHC-I expression from three experiments, indicated by points. Unpaired two-tailed Student’s _t_-test compared with control sgRNA. Significant changes are indicated; _P_ < 


0.0001. B,C, Immunoblots in K-562 Cas9 and _KMT2B_-KO cells (B), and _KMT2A_-KO ± _KMT2B_-KO cells (C). D, Cell surface MHC-I in K-562 _KMT2B_ + _PCGF1_-KO cells transduced with the


indicated sgRNA and treated for 5 d with DMSO, 1 µM VTP50469 or 3 µM EPZ-011989. Representative plot from three experiments (Supplementary Fig. 3). E, Genomic snapshots of H3K4me3


CUT&Tag in K-562 Cas9 and _KMT2A/B_-KO cells treated ± EPZ-011989. The EZH2i-treated (no IFN-γ) track is also shown in Fig. 8g. F, Immunoblots in K-562 Cas9, _MEN1-_KO and _KMT2A_-KO


cells. G–I, Genomic snapshots of K-562 Cas9 and _MEN1-_KO cells (G,H) H3K4me3 ChIP–seq and KMT2A CUT&RUN (I). The H3K4me3 tracks are also shown in Extended Data Fig. 7h. Source data


EXTENDED DATA FIG. 10 KMT2A/B IS DISPENSABLE FOR MHC ENHANCEOSOME-DRIVEN ACTIVATION. A, Schematic overview of _cis_-regulatory elements in the MHC-I promoter. NLRC5 forms an enhanceosome


with the RFX (regulatory factor X) complex, made up of RFX5, RFXANK and RFAXP (RFX-associated ankyrin-containing protein); CREB (cAMP-responsive-element-binding); and NFY (nuclear


transcription factor Y), which bind the SXY-molecule to activate transcription of MHC-I. B, Immunoblot of K-562 Cas9 cells transduced with control and _RFX5_ sgRNA. C, IFN-γ time course in


K-562 Cas9 and the indicated KO cells treated with 3 µM EPZ-011989 and 25 ng ml−1 IFN-γ for the indicated time periods. D, Immunoblot of K-562 Cas9 and _KMT2A_/_B-_KO cells transduced with


control, _SETD1A_ and/or _SETD1B_ sgRNA. Source data SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–3. REPORTING SUMMARY PEER REVIEW FILE SUPPLEMENTARY TABLES 1–7


Supplementary Tables 1–7. Supplementary Tables 1–3. CRISPR screen results. Related to Fig. 1. Supplementary Table 4. Gene lists for RNA-seq data. Related to Fig. 6 and Extended Data Fig. 7.


Supplementary Table 5. Gene list intersection of CRISPR screen and RNA-seq results. Supplementary Tables 6 and 7. Primer sequences. SOURCE DATA SOURCE DATA FIG. 1 Source data. SOURCE DATA


FIG. 2 Source data. SOURCE DATA FIG. 2 Unprocessed western blots. SOURCE DATA FIG. 3 Source data. SOURCE DATA FIG. 3 Unprocessed western blots. SOURCE DATA FIG. 4 Source data. SOURCE DATA


FIG. 5 Source data. SOURCE DATA FIG. 5 Unprocessed western blots. SOURCE DATA FIG. 6 Source data. SOURCE DATA FIG. 7 Source data. SOURCE DATA FIG. 8 Source data. SOURCE DATA FIG. 8


Unprocessed western blots. SOURCE DATA EXTENDED DATA FIG. 1 Source data. SOURCE DATA EXTENDED DATA FIG. 2 Source data. SOURCE DATA EXTENDED DATA FIG. 2 Unprocessed western blots. SOURCE DATA


EXTENDED DATA FIG. 3 Source data. SOURCE DATA EXTENDED DATA FIG. 3 Unprocessed western blot. SOURCE DATA EXTENDED DATA FIG. 4 Source data. SOURCE DATA EXTENDED DATA FIG. 4 Unprocessed


western blots. SOURCE DATA EXTENDED DATA FIG. 5 Source data. SOURCE DATA EXTENDED DATA FIG. 6 Source data. SOURCE DATA EXTENDED DATA FIG. 6 Unprocessed western blots. SOURCE DATA EXTENDED


DATA FIG. 7 Unprocessed western blots. SOURCE DATA EXTENDED DATA FIG. 9 Source data. SOURCE DATA EXTENDED DATA FIG. 9 Unprocessed western blots. SOURCE DATA EXTENDED DATA FIG. 10 Unprocessed


western blots. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the


author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Sparbier, C.E., Gillespie, A., Gomez, J. _et al._ Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically


activate bivalent genes. _Nat Cell Biol_ 25, 258–272 (2023). https://doi.org/10.1038/s41556-022-01056-x Download citation * Received: 30 September 2021 * Accepted: 15 November 2022 *


Published: 12 January 2023 * Issue Date: February 2023 * DOI: https://doi.org/10.1038/s41556-022-01056-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative