Play all audios:
ABSTRACT Much progress has been achieved in disentangling evolutionary relationships among species in the tree of life, but some taxonomic groups remain difficult to resolve despite
increasing availability of genome-scale data sets. Here we present a practical approach to studying ancient divergences in the face of high levels of conflict, based on explicit gene
genealogy interrogation (GGI). We show its efficacy in resolving the controversial relationships within the largest freshwater fish radiation (Otophysi) based on newly generated DNA
sequences for 1,051 loci from 225 species. Initial results using a suite of standard methodologies revealed conflicting phylogenetic signal, which supports ten alternative evolutionary
histories among early otophysan lineages. By contrast, GGI revealed that the vast majority of gene genealogies supports a single tree topology grounded on morphology that was not obtained by
previous molecular studies. We also reanalysed published data sets for exemplary groups with recalcitrant resolution to assess the power of this approach. GGI supports the notion that
ctenophores are the earliest-branching animal lineage, and adds insight into relationships within clades of yeasts, birds and mammals. GGI opens up a promising avenue to account for
incompatible signals in large data sets and to discern between estimation error and actual biological conflict explaining gene tree discordance. Access through your institution Buy or
subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get
Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per
year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during
checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS INCONGRUENCE IN THE
PHYLOGENOMICS ERA Article 27 June 2023 A SPECIES-LEVEL TIMELINE OF MAMMAL EVOLUTION INTEGRATING PHYLOGENOMIC DATA Article 22 December 2021 INFERENCE AND RECONSTRUCTION OF THE
HEIMDALLARCHAEIAL ANCESTRY OF EUKARYOTES Article Open access 14 June 2023 REFERENCES * Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving
incongruence in molecular phylogenies. _Nature_ 425, 798– 804 (2003). Article Google Scholar * Betancur-R., R., Naylor, G. & Orti, G. Conserved genes, sampling error, and phylogenomic
inference. _Syst. Biol._ 63, 257– 262 (2014). Article Google Scholar * Simmons, M. P., Sloan, D. B. & Gatesy, J. The effects of subsampling gene trees on coalescent methods applied to
ancient divergences. _Mol. Phylogenet. Evol._ 97, 76– 89 (2016). Article Google Scholar * Salichos, L. & Rokas, A. Inferring ancient divergences requires genes with strong phylogenetic
signals. _Nature_ 497, 327– 331 (2013). Article Google Scholar * Chen, M. Y., Liang, D. & Zhang, P. Selecting question-specific genes to reduce incongruence in phylogenomics: a case
study of jawed vertebrate backbone phylogeny. _Syst. Biol._ 64, 1104– 1120 (2015). Article Google Scholar * Jeffroy, O., Brinkmann, H., Delsuc, F. & Philippe, H. Phylogenomics: the
beginning of incongruence? _Trends Genet._ 22, 225– 231 (2006). Article Google Scholar * Kubatko, L. S. & Degnan, J. H. Inconsistency of phylogenetic estimates from concatenated data
under coalescence. _Syst. Biol._ 56, 17– 24 (2007). Article Google Scholar * Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies
coalescent. _Trends Ecol. Evol._ 24, 332– 340 (2009). Article Google Scholar * Sen, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using
phylogenomics and the multispecies coalescent model. _Proc. Natl Acad. Sci. USA_ 109, 14942–14947 (2012). Article Google Scholar * Edwards, S. V., Liu, L. & Pearl, D. K.
High-resolution species trees without concatenation. _Proc. Natl Acad. Sci. USA_ 104, 5936– 5941 (2007). Article Google Scholar * Roch, S. & Steel, M. Likelihood-based tree
reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. _Theor. Popul. Biol._ 100C, 56– 62 (2014). PubMed Google Scholar * Heled, J. &
Drummond, A. J. Bayesian inference of species trees from multilocus data. _Mol. Biol. Evol._ 27, 570– 580 (2010). Article Google Scholar * Chou, J. et al. A comparative study of
SVDquartets and other coalescent-based species tree estimation methods. _BMC Genomics_ 16, S2 (2015). Article Google Scholar * Gatesy, J. & Springer, M. S. Phylogenetic analysis at
deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. _Mol. Phylogenet. Evol._ 80, 231–266 (2014). Article Google Scholar * Roch,
S. & Warnow, T. On the robustness to gene tree estimation error (or lack thereof) of coalescent-based species tree methods. _Syst. Biol._ 64, 663–676 (2015). Article CAS Google Scholar
* Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Statistical binning enables an accurate coalescent-based estimation of the avian tree. _Science_ 346, 1250463 (2014). Article
Google Scholar * Bayzid, M. S., Mirarab, S., Boussau, B. & Warnow, T. Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic analyses. _PLoS ONE_ 10,
e0129183 (2015). Article Google Scholar * Shen, X. X., Salichos, L. & Rokas, A. A genome-scale investigation of how sequence-, function-, and tree-based gene properties influence
phylogenetic inference. _Genome Biol. Evol._ 8, 2565–2580 (2016). Article CAS Google Scholar * Liu, L. & Edwards, S. V. Comment on “Statistical binning enables an accurate
coalescent-based estimation of the avian tree”. _Science_ 350, 171 (2015). Article CAS Google Scholar * Springer, M. S. & Gatesy, J. The gene tree delusion. _Mol. Phylogenet. Evol._
94, 1–33 (2016). Article Google Scholar * Edwards, S. V. et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. _Mol. Phylogenet. Evol._
94, 447–462 (2016). Article Google Scholar * Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. _ Bioinformatics _ 30, 3317–3324 (2014). Article CAS
Google Scholar * Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Response to Comment on “Statistical binning enables an accurate coalescent-based estimation of the avian tree”.
_Science_ 350, 171 (2015). Article CAS Google Scholar * Posada, D. Phylogenomics for systematic biology. _Syst. Biol._ 65, 353–356 (2016). Article Google Scholar * Wu, Y. C., Rasmussen,
M. D., Bansal, M. S. & Kellis, M. TreeFix: statistically informed gene tree error correction using species trees. _Syst. Biol._ 62, 110–120 (2013). Article Google Scholar * Alfaro, M.
E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. _Proc. Natl Acad. Sci. USA_ 106, 13410–13414 (2009). Article CAS Google Scholar *
Fink, S. V. & Fink, W. L. Interrelationships of the ostariophysan fishes (Teleostei). _Zool. J. Linnean Soc._ 72, 297–353 (1981). Article Google Scholar * Saitoh, K., Miya, M., Inoue,
J. G., Ishiguro, N. B. & Nishida, M. Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. _J. Mol. Evol._ 56, 464–472 (2003). Article CAS Google
Scholar * Nakatani, M., Miya, M., Mabuchi, K., Saitoh, K. & Nishida, M. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and
Mesozoic radiation. _BMC Evol. Biol._ 11, 177 (2011). Article Google Scholar * Chen, W. J., Lavoue, S. & Mayden, R. L. Evolutionary origin and early biogeography of otophysan fishes
(Ostariophysi: Teleostei). _Evolution_ 67, 2218–2239 (2013). Article Google Scholar * Chakrabarty, P., McMahan, C., Fink, W., Stiassny, M. L. & Alfaro, M. in _ASIH – American Society
of Ichthyologists and Herpetologists_ (eds Crump, M. L. & Donnelly, M. A.) (2013). Google Scholar * Hillis, D. M., Heath, T. A. & St. John, K. Analysis and visualization of tree
space. _Syst. Biol._ 54, 471–482 (2005). Article Google Scholar * Betancur-R., R., Li, C., Munroe, T. A., Ballesteros, J. A. & Orti, G. Addressing gene-tree discordance and
non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). _Syst. Biol._ 62, 763–785 (2013). Article Google Scholar * Romiguier, J., Ranwez, V.,
Delsuc, F., Galtier, N. & Douzery, E. J. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. _Mol. Biol. Evol._ 30,
2134–2144 (2013). Article CAS Google Scholar * Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. _Syst. Biol._ 51, 492–508 (2002). Article Google Scholar *
Allman, E. S., Degnan, J. H. & Rhodes, J. A. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. _J. Math. Biol._ 62, 833–862 (2010).
Article Google Scholar * Degnan, J. H. Anomalous unrooted gene trees. _Syst. Biol._ 62, 574–590 (2013). Article CAS Google Scholar * Maddison, W. P. Gene trees in species trees. _Syst.
Biol._ 46, 523–536 (1997). Article Google Scholar * Pisani, D. et al. Genomic data do not support comb jellies as the sister group to all other animals. _Proc. Natl Acad. Sci. USA_ 112,
15402–15407 (2015). Article CAS Google Scholar * Whelan, N. V., Kocot, K. M., Moroz, L. L. & Halanych, K. M. Error, signal, and the placement of Ctenophora sister to all other
animals. _Proc. Natl Acad. Sci. USA_ 112, 5773–5778 (2015). Article CAS Google Scholar * Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary
implications. _Annu. Rev. Ecol. Evol. Syst._ 45, 371– 395 (2014). Article Google Scholar * Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell
type evolution. _Science_ 342, 1242592 (2013). Article Google Scholar * Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. _Nature_
526, 569–573 (2015). Article CAS Google Scholar * Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian
birds. _PLoS Biol._ 13, e1002224 (2015). Article Google Scholar * Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. _Science_ 346,
1320–1331 (2014). Article CAS Google Scholar * Song, S., Liu, L., Edwards, S. V. & Wub, S. Correction for Song _et al._, Resolving conflict in eutherian mammal phylogeny using
phylogenomics and the multispecies coalescent model. _Proc. Natl Acad. Sci. USA_ 112, E6079 (2015). Article Google Scholar * Hahn, M. W. & Nakhleh, L. Irrational exuberance for
resolved species trees. _Evolution_ 70, 7–17 (2016). Article Google Scholar * Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. _Nat. Methods_ 7, 111–118
(2010). Article CAS Google Scholar * Li, C., Hofreiter, M., Straube, N., Corrigan, S. & Naylor, G. J. Capturing protein-coding genes across highly divergent species. _BioTechniques_
54, 321–326 (2013). Article CAS Google Scholar * Dimmick, W. W. & Larson, A. A molecular and morphological perspective on the phylogenetic relationships of the otophysan fishes. _Mol.
Phylog. Evol._ 6, 120–133 (1996). Article CAS Google Scholar * Alves-Gomes, J. A. in _Gonorynchiformes and Ostariophysan Relationships_ (eds Grande, T., Potayo-Ariza, F. J. & Diogo,
R.) (Science Publishers, 2010) 517–565. Google Scholar * Near, T. J. et al. Resolution of ray-finned fish phylogeny and timing of diversification. _Proc. Natl Acad. Sci. USA_ 109,
13698–13703 (2012). Article CAS Google Scholar * Lavoue, S. et al. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: Implications for
higher-level relationships within the Otocephala. _Mol. Phylog. Evol._ 37, 165–177 (2005). Article CAS Google Scholar * Betancur-R., R. et al. The tree of life and a new classificaion of
bony fishes. _PLoS Curr. Tree of Life_ http://dx.doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 (2013). * Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the
confidence of phylogenetic tree selection. _ Bioinformatics _ 17, 1246–1247 (2001). Article CAS Google Scholar * Li, C., Orti, G., Zhang, G. & Lu, G. A practical approach to
phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. _BMC Evol. Biol._ 7, 44 (2007). Article Google Scholar * Dettai, A. & Lecointre, G. New insights into
the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei). _Mol. Phylog. Evol._
48, 258–269 (2008). Article CAS Google Scholar * Li, C., Riethoven, J. J. & Naylor, G. J. P. EvolMarkers: a database for mining exon and intron markers for evolution, ecology and
conservation studies. _Mol. Ecol. Resour._ 12, 967–971 (2012). Article CAS Google Scholar * Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide
sequences guided by amino acid translations. _Nucleic Acids Res._ 38, 7–13 (2010). Article Google Scholar * Sharma, P. P. et al. Phylogenomic interrogation of arachnida reveals systemic
conflicts in phylogenetic signal. _Mol. Biol. Evol._ 31, 2963–2984 (2014). Article CAS Google Scholar * Inoue, J., Sato, Y., Sinclair, R., Tsukamoto, K. & Nishida, M. Rapid genome
reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. _Proc. Natl Acad. Sci. USA_ 112, 14918–14923 (2015). Article CAS Google
Scholar * Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. _ Bioinformatics _ 20, 289–290 (2004). Article CAS Google Scholar * R
Development Core Team, _R: A Language and Environment for Statistical Computing_ . (R Foundation for Statistical Computing, 2011); http://www.R-project.org/ * Kumar, S., Stecher, G.,
Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. _Bioinformatics_ 28, 2685–2686 (2012).
Article CAS Google Scholar * Murray, K., Mìller, S. & Turlach, B. A. Revisiting fitting monotone polynomials to data. _Comp. Stat._ 28, 1989–2005 (2013). Article Google Scholar *
Maddison, W. & Maddision, D. Mesquite: a modular system for evolutionary analysis, version 2.6. (2009). * Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing Large Minimum
Evolution Trees with Profiles instead of a Distance Matrix. _Mol. Biol. Evol._ 26, 1641–1650 (2009). Article CAS Google Scholar * Aberer, A. J., Kobert, K. & Stamatakis, A. ExaBayes:
massively parallel bayesian tree inference for the whole-genome era. _Mol. Biol. Evol._ 31, 2553–2556 (2014). Article CAS Google Scholar * Tracer v1.6 (2014);
http://beast.bio.ed.ac.uk/Tracer * Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. _Cladistics_ 24, 774–786 (2008). Article Google Scholar
* Liu, L., Yu, L., Pearl, D. K. & Edwards, S. V. Estimating species phylogenies using coalescence times among sequences. _Syst. Biol._ 58, 468–477 (2009). Article CAS Google Scholar *
Liu, L. & Yu, L. Estimating species trees from unrooted gene trees. _Syst. Biol._ 60, 661–667 (2011). Article Google Scholar * Shaw, T. I., Ruan, Z., Glenn, T. C. & Liu, L. STRAW:
Species TRee Analysis Web server. _Nucleic Acids Res._ 41, 238–241 (2013). Article Google Scholar * Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are
not enough. _PLoS Biol._ 9, e1000602 (2011). Article CAS Google Scholar * Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using
phylogenomics and the multispecies coalescent modeL. _Proc. Natl Acad. Sci. USA_ 2012 (2012). Download references ACKNOWLEDGEMENTS We dedicate this contribution in honour and memory of our
friend and valued colleague Richard Vari whose untimely death has left a huge lacuna in the world of otophysan systematics. We thank D. Maddison, for helping with the MDS analyses in
Mesquite, and R. Rivero, for helping with illustrations. We also thank S. Edwards and T. Warnow for providing extensive comments on earlier versions of the paper. J. P. Sullivan kindly
provided a photograph for Citharinoidei. This work was supported by National Science Foundation (NSF) grants (DEB-147184, DEB-1541491) to R.B.R., (DEB-1457426 and DEB-1541554) to G.O.,
(DEB-0315963 and DEB-1023403) to J.W.A., and (DEB-1350474) to L.J.R. This project was also funded by the Opportunity Research Program between George Washington University and the Natural
History Museum (Smithsonian) to G.O. and R.V and the Smithsonian Peter Buck fellowship to R.B.R. AUTHOR INFORMATION Author notes * Richard Vari: Deceased. AUTHORS AND AFFILIATIONS *
Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, 20052, DC, USA Dahiana Arcila, Guillermo Ortí & Kyung D. Ko * Department of Vertebrate
Zoology, National Museum of Natural History Smithsonian Institution, PO Box 37012, MRC 159, Washington, 20013, DC, USA Dahiana Arcila, Richard Vari & Ricardo Betancur-R. * Department of
Biological Sciences, Auburn University, Auburn, 36849, Alabama, USA Jonathan W. Armbruster * Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History,
New York, 10024, New York, USA Melanie L. J. Stiassny * Department of Ichthyology, The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, 19103, Pennsylvania, USA
Mark H. Sabaj & John Lundberg * Department of Biology, University of Massachusetts Boston, Boston, 02125, Massachusetts, USA Liam J. Revell * Department of Biology, University of Puerto
Rico – Río Piedras, PO Box 23360, San Juan, Puerto Rico Ricardo Betancur-R. Authors * Dahiana Arcila View author publications You can also search for this author inPubMed Google Scholar *
Guillermo Ortí View author publications You can also search for this author inPubMed Google Scholar * Richard Vari View author publications You can also search for this author inPubMed
Google Scholar * Jonathan W. Armbruster View author publications You can also search for this author inPubMed Google Scholar * Melanie L. J. Stiassny View author publications You can also
search for this author inPubMed Google Scholar * Kyung D. Ko View author publications You can also search for this author inPubMed Google Scholar * Mark H. Sabaj View author publications You
can also search for this author inPubMed Google Scholar * John Lundberg View author publications You can also search for this author inPubMed Google Scholar * Liam J. Revell View author
publications You can also search for this author inPubMed Google Scholar * Ricardo Betancur-R. View author publications You can also search for this author inPubMed Google Scholar
CONTRIBUTIONS D.A., R.B.R., R.V. and G.O. planned the project; R.B.R., K.K and G.O. conducted the pilot experiment; D.A. and R.B.R. carried out the experiments and collected the data; D.A.,
R.B.R., L.J.R., and G.O. conceived the GGI method; D.A. and R.B.R. analysed data; J.W.A., J.L., M.L.J.S., and M.H.S. collected, identified and curated the fish specimens examined; R.B.R.,
D.A. and G.O. wrote the paper and all other authors contributed to the writing. CORRESPONDING AUTHOR Correspondence to Ricardo Betancur-R.. ETHICS DECLARATIONS COMPETING INTERESTS The
authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Supplementary Notes, Supplementary Figures 1–7 and Supplementary
Tables 1–8. (PDF 1912 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Arcila, D., Ortí, G., Vari, R. _et al._ Genome-wide interrogation advances
resolution of recalcitrant groups in the tree of life. _Nat Ecol Evol_ 1, 0020 (2017). https://doi.org/10.1038/s41559-016-0020 Download citation * Received: 10 June 2016 * Accepted: 25
October 2016 * Published: 13 January 2017 * DOI: https://doi.org/10.1038/s41559-016-0020 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get
shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative