Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life

Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life

Play all audios:

Loading...

ABSTRACT Much progress has been achieved in disentangling evolutionary relationships among species in the tree of life, but some taxonomic groups remain difficult to resolve despite


increasing availability of genome-scale data sets. Here we present a practical approach to studying ancient divergences in the face of high levels of conflict, based on explicit gene


genealogy interrogation (GGI). We show its efficacy in resolving the controversial relationships within the largest freshwater fish radiation (Otophysi) based on newly generated DNA


sequences for 1,051 loci from 225 species. Initial results using a suite of standard methodologies revealed conflicting phylogenetic signal, which supports ten alternative evolutionary


histories among early otophysan lineages. By contrast, GGI revealed that the vast majority of gene genealogies supports a single tree topology grounded on morphology that was not obtained by


previous molecular studies. We also reanalysed published data sets for exemplary groups with recalcitrant resolution to assess the power of this approach. GGI supports the notion that


ctenophores are the earliest-branching animal lineage, and adds insight into relationships within clades of yeasts, birds and mammals. GGI opens up a promising avenue to account for


incompatible signals in large data sets and to discern between estimation error and actual biological conflict explaining gene tree discordance. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get


Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per


year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during


checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS INCONGRUENCE IN THE


PHYLOGENOMICS ERA Article 27 June 2023 A SPECIES-LEVEL TIMELINE OF MAMMAL EVOLUTION INTEGRATING PHYLOGENOMIC DATA Article 22 December 2021 INFERENCE AND RECONSTRUCTION OF THE


HEIMDALLARCHAEIAL ANCESTRY OF EUKARYOTES Article Open access 14 June 2023 REFERENCES * Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving


incongruence in molecular phylogenies. _Nature_ 425, 798– 804 (2003). Article  Google Scholar  * Betancur-R., R., Naylor, G. & Orti, G. Conserved genes, sampling error, and phylogenomic


inference. _Syst. Biol._ 63, 257– 262 (2014). Article  Google Scholar  * Simmons, M. P., Sloan, D. B. & Gatesy, J. The effects of subsampling gene trees on coalescent methods applied to


ancient divergences. _Mol. Phylogenet. Evol._ 97, 76– 89 (2016). Article  Google Scholar  * Salichos, L. & Rokas, A. Inferring ancient divergences requires genes with strong phylogenetic


signals. _Nature_ 497, 327– 331 (2013). Article  Google Scholar  * Chen, M. Y., Liang, D. & Zhang, P. Selecting question-specific genes to reduce incongruence in phylogenomics: a case


study of jawed vertebrate backbone phylogeny. _Syst. Biol._ 64, 1104– 1120 (2015). Article  Google Scholar  * Jeffroy, O., Brinkmann, H., Delsuc, F. & Philippe, H. Phylogenomics: the


beginning of incongruence? _Trends Genet._ 22, 225– 231 (2006). Article  Google Scholar  * Kubatko, L. S. & Degnan, J. H. Inconsistency of phylogenetic estimates from concatenated data


under coalescence. _Syst. Biol._ 56, 17– 24 (2007). Article  Google Scholar  * Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies


coalescent. _Trends Ecol. Evol._ 24, 332– 340 (2009). Article  Google Scholar  * Sen, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using


phylogenomics and the multispecies coalescent model. _Proc. Natl Acad. Sci. USA_ 109, 14942–14947 (2012). Article  Google Scholar  * Edwards, S. V., Liu, L. & Pearl, D. K.


High-resolution species trees without concatenation. _Proc. Natl Acad. Sci. USA_ 104, 5936– 5941 (2007). Article  Google Scholar  * Roch, S. & Steel, M. Likelihood-based tree


reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. _Theor. Popul. Biol._ 100C, 56– 62 (2014). PubMed  Google Scholar  * Heled, J. &


Drummond, A. J. Bayesian inference of species trees from multilocus data. _Mol. Biol. Evol._ 27, 570– 580 (2010). Article  Google Scholar  * Chou, J. et al. A comparative study of


SVDquartets and other coalescent-based species tree estimation methods. _BMC Genomics_ 16, S2 (2015). Article  Google Scholar  * Gatesy, J. & Springer, M. S. Phylogenetic analysis at


deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. _Mol. Phylogenet. Evol._ 80, 231–266 (2014). Article  Google Scholar  * Roch,


S. & Warnow, T. On the robustness to gene tree estimation error (or lack thereof) of coalescent-based species tree methods. _Syst. Biol._ 64, 663–676 (2015). Article  CAS  Google Scholar


  * Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Statistical binning enables an accurate coalescent-based estimation of the avian tree. _Science_ 346, 1250463 (2014). Article 


Google Scholar  * Bayzid, M. S., Mirarab, S., Boussau, B. & Warnow, T. Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic analyses. _PLoS ONE_ 10,


e0129183 (2015). Article  Google Scholar  * Shen, X. X., Salichos, L. & Rokas, A. A genome-scale investigation of how sequence-, function-, and tree-based gene properties influence


phylogenetic inference. _Genome Biol. Evol._ 8, 2565–2580 (2016). Article  CAS  Google Scholar  * Liu, L. & Edwards, S. V. Comment on “Statistical binning enables an accurate


coalescent-based estimation of the avian tree”. _Science_ 350, 171 (2015). Article  CAS  Google Scholar  * Springer, M. S. & Gatesy, J. The gene tree delusion. _Mol. Phylogenet. Evol._


94, 1–33 (2016). Article  Google Scholar  * Edwards, S. V. et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. _Mol. Phylogenet. Evol._


94, 447–462 (2016). Article  Google Scholar  * Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. _ Bioinformatics _ 30, 3317–3324 (2014). Article  CAS


  Google Scholar  * Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Response to Comment on “Statistical binning enables an accurate coalescent-based estimation of the avian tree”.


_Science_ 350, 171 (2015). Article  CAS  Google Scholar  * Posada, D. Phylogenomics for systematic biology. _Syst. Biol._ 65, 353–356 (2016). Article  Google Scholar  * Wu, Y. C., Rasmussen,


M. D., Bansal, M. S. & Kellis, M. TreeFix: statistically informed gene tree error correction using species trees. _Syst. Biol._ 62, 110–120 (2013). Article  Google Scholar  * Alfaro, M.


E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. _Proc. Natl Acad. Sci. USA_ 106, 13410–13414 (2009). Article  CAS  Google Scholar  *


Fink, S. V. & Fink, W. L. Interrelationships of the ostariophysan fishes (Teleostei). _Zool. J. Linnean Soc._ 72, 297–353 (1981). Article  Google Scholar  * Saitoh, K., Miya, M., Inoue,


J. G., Ishiguro, N. B. & Nishida, M. Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. _J. Mol. Evol._ 56, 464–472 (2003). Article  CAS  Google


Scholar  * Nakatani, M., Miya, M., Mabuchi, K., Saitoh, K. & Nishida, M. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and


Mesozoic radiation. _BMC Evol. Biol._ 11, 177 (2011). Article  Google Scholar  * Chen, W. J., Lavoue, S. & Mayden, R. L. Evolutionary origin and early biogeography of otophysan fishes


(Ostariophysi: Teleostei). _Evolution_ 67, 2218–2239 (2013). Article  Google Scholar  * Chakrabarty, P., McMahan, C., Fink, W., Stiassny, M. L. & Alfaro, M. in _ASIH – American Society


of Ichthyologists and Herpetologists_ (eds Crump, M. L. & Donnelly, M. A.) (2013). Google Scholar  * Hillis, D. M., Heath, T. A. & St. John, K. Analysis and visualization of tree


space. _Syst. Biol._ 54, 471–482 (2005). Article  Google Scholar  * Betancur-R., R., Li, C., Munroe, T. A., Ballesteros, J. A. & Orti, G. Addressing gene-tree discordance and


non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). _Syst. Biol._ 62, 763–785 (2013). Article  Google Scholar  * Romiguier, J., Ranwez, V.,


Delsuc, F., Galtier, N. & Douzery, E. J. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. _Mol. Biol. Evol._ 30,


2134–2144 (2013). Article  CAS  Google Scholar  * Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. _Syst. Biol._ 51, 492–508 (2002). Article  Google Scholar  *


Allman, E. S., Degnan, J. H. & Rhodes, J. A. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. _J. Math. Biol._ 62, 833–862 (2010).


Article  Google Scholar  * Degnan, J. H. Anomalous unrooted gene trees. _Syst. Biol._ 62, 574–590 (2013). Article  CAS  Google Scholar  * Maddison, W. P. Gene trees in species trees. _Syst.


Biol._ 46, 523–536 (1997). Article  Google Scholar  * Pisani, D. et al. Genomic data do not support comb jellies as the sister group to all other animals. _Proc. Natl Acad. Sci. USA_ 112,


15402–15407 (2015). Article  CAS  Google Scholar  * Whelan, N. V., Kocot, K. M., Moroz, L. L. & Halanych, K. M. Error, signal, and the placement of Ctenophora sister to all other


animals. _Proc. Natl Acad. Sci. USA_ 112, 5773–5778 (2015). Article  CAS  Google Scholar  * Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary


implications. _Annu. Rev. Ecol. Evol. Syst._ 45, 371– 395 (2014). Article  Google Scholar  * Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell


type evolution. _Science_ 342, 1242592 (2013). Article  Google Scholar  * Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. _Nature_


526, 569–573 (2015). Article  CAS  Google Scholar  * Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian


birds. _PLoS Biol._ 13, e1002224 (2015). Article  Google Scholar  * Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. _Science_ 346,


1320–1331 (2014). Article  CAS  Google Scholar  * Song, S., Liu, L., Edwards, S. V. & Wub, S. Correction for Song _et al._, Resolving conflict in eutherian mammal phylogeny using


phylogenomics and the multispecies coalescent model. _Proc. Natl Acad. Sci. USA_ 112, E6079 (2015). Article  Google Scholar  * Hahn, M. W. & Nakhleh, L. Irrational exuberance for


resolved species trees. _Evolution_ 70, 7–17 (2016). Article  Google Scholar  * Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. _Nat. Methods_ 7, 111–118


(2010). Article  CAS  Google Scholar  * Li, C., Hofreiter, M., Straube, N., Corrigan, S. & Naylor, G. J. Capturing protein-coding genes across highly divergent species. _BioTechniques_


54, 321–326 (2013). Article  CAS  Google Scholar  * Dimmick, W. W. & Larson, A. A molecular and morphological perspective on the phylogenetic relationships of the otophysan fishes. _Mol.


Phylog. Evol._ 6, 120–133 (1996). Article  CAS  Google Scholar  * Alves-Gomes, J. A. in _Gonorynchiformes and Ostariophysan Relationships_ (eds Grande, T., Potayo-Ariza, F. J. & Diogo,


R.) (Science Publishers, 2010) 517–565. Google Scholar  * Near, T. J. et al. Resolution of ray-finned fish phylogeny and timing of diversification. _Proc. Natl Acad. Sci. USA_ 109,


13698–13703 (2012). Article  CAS  Google Scholar  * Lavoue, S. et al. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: Implications for


higher-level relationships within the Otocephala. _Mol. Phylog. Evol._ 37, 165–177 (2005). Article  CAS  Google Scholar  * Betancur-R., R. et al. The tree of life and a new classificaion of


bony fishes. _PLoS Curr. Tree of Life_ http://dx.doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 (2013). * Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the


confidence of phylogenetic tree selection. _ Bioinformatics _ 17, 1246–1247 (2001). Article  CAS  Google Scholar  * Li, C., Orti, G., Zhang, G. & Lu, G. A practical approach to


phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. _BMC Evol. Biol._ 7, 44 (2007). Article  Google Scholar  * Dettai, A. & Lecointre, G. New insights into


the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei). _Mol. Phylog. Evol._


48, 258–269 (2008). Article  CAS  Google Scholar  * Li, C., Riethoven, J. J. & Naylor, G. J. P. EvolMarkers: a database for mining exon and intron markers for evolution, ecology and


conservation studies. _Mol. Ecol. Resour._ 12, 967–971 (2012). Article  CAS  Google Scholar  * Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide


sequences guided by amino acid translations. _Nucleic Acids Res._ 38, 7–13 (2010). Article  Google Scholar  * Sharma, P. P. et al. Phylogenomic interrogation of arachnida reveals systemic


conflicts in phylogenetic signal. _Mol. Biol. Evol._ 31, 2963–2984 (2014). Article  CAS  Google Scholar  * Inoue, J., Sato, Y., Sinclair, R., Tsukamoto, K. & Nishida, M. Rapid genome


reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. _Proc. Natl Acad. Sci. USA_ 112, 14918–14923 (2015). Article  CAS  Google


Scholar  * Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. _ Bioinformatics _ 20, 289–290 (2004). Article  CAS  Google Scholar  * R


Development Core Team, _R: A Language and Environment for Statistical Computing_ . (R Foundation for Statistical Computing, 2011); http://www.R-project.org/ * Kumar, S., Stecher, G.,


Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. _Bioinformatics_ 28, 2685–2686 (2012).


Article  CAS  Google Scholar  * Murray, K., Mìller, S. & Turlach, B. A. Revisiting fitting monotone polynomials to data. _Comp. Stat._ 28, 1989–2005 (2013). Article  Google Scholar  *


Maddison, W. & Maddision, D. Mesquite: a modular system for evolutionary analysis, version 2.6. (2009). * Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing Large Minimum


Evolution Trees with Profiles instead of a Distance Matrix. _Mol. Biol. Evol._ 26, 1641–1650 (2009). Article  CAS  Google Scholar  * Aberer, A. J., Kobert, K. & Stamatakis, A. ExaBayes:


massively parallel bayesian tree inference for the whole-genome era. _Mol. Biol. Evol._ 31, 2553–2556 (2014). Article  CAS  Google Scholar  * Tracer v1.6 (2014);


http://beast.bio.ed.ac.uk/Tracer * Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. _Cladistics_ 24, 774–786 (2008). Article  Google Scholar 


* Liu, L., Yu, L., Pearl, D. K. & Edwards, S. V. Estimating species phylogenies using coalescence times among sequences. _Syst. Biol._ 58, 468–477 (2009). Article  CAS  Google Scholar  *


Liu, L. & Yu, L. Estimating species trees from unrooted gene trees. _Syst. Biol._ 60, 661–667 (2011). Article  Google Scholar  * Shaw, T. I., Ruan, Z., Glenn, T. C. & Liu, L. STRAW:


Species TRee Analysis Web server. _Nucleic Acids Res._ 41, 238–241 (2013). Article  Google Scholar  * Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are


not enough. _PLoS Biol._ 9, e1000602 (2011). Article  CAS  Google Scholar  * Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using


phylogenomics and the multispecies coalescent modeL. _Proc. Natl Acad. Sci. USA_ 2012 (2012). Download references ACKNOWLEDGEMENTS We dedicate this contribution in honour and memory of our


friend and valued colleague Richard Vari whose untimely death has left a huge lacuna in the world of otophysan systematics. We thank D. Maddison, for helping with the MDS analyses in


Mesquite, and R. Rivero, for helping with illustrations. We also thank S. Edwards and T. Warnow for providing extensive comments on earlier versions of the paper. J. P. Sullivan kindly


provided a photograph for Citharinoidei. This work was supported by National Science Foundation (NSF) grants (DEB-147184, DEB-1541491) to R.B.R., (DEB-1457426 and DEB-1541554) to G.O.,


(DEB-0315963 and DEB-1023403) to J.W.A., and (DEB-1350474) to L.J.R. This project was also funded by the Opportunity Research Program between George Washington University and the Natural


History Museum (Smithsonian) to G.O. and R.V and the Smithsonian Peter Buck fellowship to R.B.R. AUTHOR INFORMATION Author notes * Richard Vari: Deceased. AUTHORS AND AFFILIATIONS *


Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, 20052, DC, USA Dahiana Arcila, Guillermo Ortí & Kyung D. Ko * Department of Vertebrate


Zoology, National Museum of Natural History Smithsonian Institution, PO Box 37012, MRC 159, Washington, 20013, DC, USA Dahiana Arcila, Richard Vari & Ricardo Betancur-R. * Department of


Biological Sciences, Auburn University, Auburn, 36849, Alabama, USA Jonathan W. Armbruster * Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History,


New York, 10024, New York, USA Melanie L. J. Stiassny * Department of Ichthyology, The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, 19103, Pennsylvania, USA


Mark H. Sabaj & John Lundberg * Department of Biology, University of Massachusetts Boston, Boston, 02125, Massachusetts, USA Liam J. Revell * Department of Biology, University of Puerto


Rico – Río Piedras, PO Box 23360, San Juan, Puerto Rico Ricardo Betancur-R. Authors * Dahiana Arcila View author publications You can also search for this author inPubMed Google Scholar *


Guillermo Ortí View author publications You can also search for this author inPubMed Google Scholar * Richard Vari View author publications You can also search for this author inPubMed 


Google Scholar * Jonathan W. Armbruster View author publications You can also search for this author inPubMed Google Scholar * Melanie L. J. Stiassny View author publications You can also


search for this author inPubMed Google Scholar * Kyung D. Ko View author publications You can also search for this author inPubMed Google Scholar * Mark H. Sabaj View author publications You


can also search for this author inPubMed Google Scholar * John Lundberg View author publications You can also search for this author inPubMed Google Scholar * Liam J. Revell View author


publications You can also search for this author inPubMed Google Scholar * Ricardo Betancur-R. View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS D.A., R.B.R., R.V. and G.O. planned the project; R.B.R., K.K and G.O. conducted the pilot experiment; D.A. and R.B.R. carried out the experiments and collected the data; D.A.,


R.B.R., L.J.R., and G.O. conceived the GGI method; D.A. and R.B.R. analysed data; J.W.A., J.L., M.L.J.S., and M.H.S. collected, identified and curated the fish specimens examined; R.B.R.,


D.A. and G.O. wrote the paper and all other authors contributed to the writing. CORRESPONDING AUTHOR Correspondence to Ricardo Betancur-R.. ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Supplementary Notes, Supplementary Figures 1–7 and Supplementary


Tables 1–8. (PDF 1912 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Arcila, D., Ortí, G., Vari, R. _et al._ Genome-wide interrogation advances


resolution of recalcitrant groups in the tree of life. _Nat Ecol Evol_ 1, 0020 (2017). https://doi.org/10.1038/s41559-016-0020 Download citation * Received: 10 June 2016 * Accepted: 25


October 2016 * Published: 13 January 2017 * DOI: https://doi.org/10.1038/s41559-016-0020 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative