Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans

Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans

Play all audios:

Loading...

ABSTRACT Functional magnetic resonance imaging (fMRI) is a central tool for investigating human brain function, organization and disease. Here, we show that fMRI-based estimates of


functional brain connectivity artifactually inflate at spatially heterogeneous rates during resting-state and task-based scans. This produces false positive connection strength changes and


spatial distortion of brain connectivity maps. We demonstrate that this artefact is driven by temporal inflation of the non-neuronal, systemic low-frequency oscillation (sLFO) blood flow


signal during fMRI scanning and is not addressed by standard denoising procedures. We provide evidence that sLFO inflation reflects perturbations in cerebral blood flow by respiration and


heart rate changes that accompany diminishing arousal during scanning, although the mechanisms of this pathway are uncertain. Finally, we show that adding a specialized sLFO denoising


procedure to fMRI processing pipelines mitigates the artifactual inflation of functional connectivity, enhancing the validity and within-scan reliability of fMRI findings. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature


Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to


articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS SYSTEMATIC EVALUATION OF FMRI DATA-PROCESSING PIPELINES FOR CONSISTENT FUNCTIONAL CONNECTOMICS Article Open access 04 June 2024 COMPARISON OF WHOLE-BRAIN TASK-MODULATED FUNCTIONAL


CONNECTIVITY METHODS FOR FMRI TASK CONNECTOMICS Article Open access 26 October 2024 APPARENT DIFFUSION COEFFICIENT FMRI SHINES LIGHT ON WHITE MATTER RESTING-STATE CONNECTIVITY COMPARED TO


BOLD Article Open access 16 March 2025 DATA AVAILABILITY The HCP dataset is publicly available on the open access Connectome database (https://db.humanconnectome.org/app/template/Login.vm),


which can be accessed after signing a data use agreement. The PSU (https://openneuro.org/datasets/ds003768/versions/1.0.9) and YMRRC (https://openneuro.org/datasets/ds003673/versions/2.0.1)


datasets are publicly available on the OpenNeuro repository. The MIC dataset is available upon reasonable request to the corresponding author. CODE AVAILABILITY The code for assessing the


presence of brain-wide FC inflation in an fMRI dataset is publicly available at https://github.com/ckorponay/Connectivity-Inflation/blob/main/FC_Inflation_Evaluator.m. The code and


instructions for performing RIPTiDe denoising using the rapidtide package are publicly available at


https://rapidtide.readthedocs.io/en/latest/usage_rapidtide.html#removing-low-frequency-physiological-noise-from-fmri-data. REFERENCES * Murphy, K., Birn, R. M. & Bandettini, P. A.


Resting-state fMRI confounds and cleanup. _Neuroimage_ 80, 349–359 (2013). Article  PubMed  Google Scholar  * Glover, G. H., Li, T. Q. & Ress, D. Image‐based method for retrospective


correction of physiological motion effects in fMRI: RETROICOR. _Magn. Reson. Med._ 44, 162–167 (2000). Article  CAS  PubMed  Google Scholar  * Tong, Y., Hocke, L. M. & Frederick, B. B.


Low frequency systemic hemodynamic ‘noise’ in resting state BOLD fMRI: characteristics, causes, implications, mitigation strategies, and applications. _Front. Neurosci._ 13, 787 (2019).


Article  PubMed  PubMed Central  Google Scholar  * Power, J. D., Schlaggar, B. L. & Petersen, S. E. Recent progress and outstanding issues in motion correction in resting state fMRI.


_Neuroimage_ 105, 536–551 (2015). Article  PubMed  Google Scholar  * Johnstone, T. et al. Motion correction and the use of motion covariates in multiple‐subject fMRI analysis. _Hum. Brain


Mapp._ 27, 779–788 (2006). Article  PubMed  PubMed Central  Google Scholar  * Janes, A. C., Peechatka, A. L., Frederick, B. B. & Kaiser, R. H. Dynamic functioning of transient


resting‐state coactivation networks in the Human Connectome Project. _Hum. Brain Mapp._ 41, 373–387 (2020). Article  PubMed  Google Scholar  * Salimi-Khorshidi, G. et al. Automatic denoising


of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. _Neuroimage_ 90, 449–468 (2014). Article  PubMed  Google Scholar  * Gu, Y.,


Sainburg, L. E., Han, F. & Liu, X. Simultaneous EEG and functional MRI data during rest and sleep from humans. _Data Brief_ 48, 109059 (2023). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. _Nat. Methods_ 16, 111–116 (2019). Article  CAS  PubMed  Google Scholar  * Marek, S. et al.


Reproducible brain-wide association studies require thousands of individuals. _Nature_ 603, 654–660 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bandettini, P. A. Lost in


transformation: fMRI power is diminished by unknown variability in methods and people. _Aperture Neuro_ https://doi.org/10.52294/725139d7-0b8a-49dc-a81d-ba2ca64ff6d9 (2022). * Keilholz, S.,


Pan, W., Billings, J., Nezafati, M. & Shakil, S. Noise and non-neuronal contributions to the BOLD signal. Applications to and insights from animal studies. _Neuroimage_ 154, 267–281


(2017). * Poldrack, R. A. Precision neuroscience: dense sampling of individual brains. _Neuron_ 95, 727–729 (2017). Article  CAS  PubMed  Google Scholar  * Gordon, E. M. et al. Precision


functional mapping of individual human brains. _Neuron_ 95, 791–807 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Noble, S., Scheinost, D. & Constable, R. T. A decade


of test–retest reliability of functional connectivity: a systematic review and meta-analysis. _Neuroimage_ 203, 116157 (2019). Article  PubMed  Google Scholar  * Noble, S., Scheinost, D.


& Constable, R. T. A guide to the measurement and interpretation of fMRI test–retest reliability. _Curr. Opin. Behav. Sci._ 40, 27–32 (2021). Article  PubMed  PubMed Central  Google


Scholar  * Janes, A. C., Krantz, N. L., Nickerson, L. D., Frederick, B. B. & Lukas, S. E. Craving and cue reactivity in nicotine-dependent tobacco smokers is associated with different


insula networks. _Biol. Psychiatry Cogn. Neurosci. Neuroimaging_ 5, 76–83 (2020). PubMed  Google Scholar  * Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview.


_Neuroimage_ 80, 62–79 (2013). Article  PubMed  Google Scholar  * Glasser, M. F. et al. The Human Connectome Project’s neuroimaging approach. _Nat. Neurosci._ 19, 1175–1187 (2016). Article 


PubMed  PubMed Central  Google Scholar  * Korponay, C., Stein, E. A. & Ross, T. J. Misconfigured striatal connectivity profiles in smokers. _Neuropsychopharmacology_ 47, 2081–2089


(2022). Article  PubMed  PubMed Central  Google Scholar  * Faillenot, I., Heckemann, R. A., Frot, M. & Hammers, A. Macroanatomy and 3D probabilistic atlas of the human insula.


_Neuroimage_ 150, 88–98 (2017). Article  PubMed  Google Scholar  * Choi, E. Y., Yeo, B. T. & Buckner, R. L. The organization of the human striatum estimated by intrinsic functional


connectivity. _J. Neurophysiol._ 108, 2242–2263 (2012). Article  PubMed  PubMed Central  Google Scholar  * Yeo, B. T. et al. The organization of the human cerebral cortex estimated by


intrinsic functional connectivity. _J. Neurophysiol._ 106, 1125–1165 (2011). Article  PubMed  Google Scholar  * Schaefer, A. et al. Local-global parcellation of the human cerebral cortex


from intrinsic functional connectivity MRI. _Cereb. Cortex_ 28, 3095–3114 (2018). Article  PubMed  Google Scholar  * Engelmann, J. M. et al. Neural substrates of smoking cue reactivity: a


meta-analysis of fMRI studies. _Neuroimage_ 60, 252–262 (2012). Article  PubMed  Google Scholar  * Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project.


_Neuroimage_ 80, 105–124 (2013). Article  PubMed  Google Scholar  * Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional


connectivity MRI. _Neuroimage_ 154, 169–173 (2017). Article  PubMed  Google Scholar  * Griffanti, L. et al. Hand classification of fMRI ICA noise components. _Neuroimage_ 154, 188–205


(2017). Article  PubMed  Google Scholar  * Erdoğan, S. B., Tong, Y., Hocke, L. M., Lindsey, K. P. & deB, F. B. Correcting for blood arrival time in global mean regression enhances


functional connectivity analysis of resting state fMRI-BOLD signals. _Front. Hum. Neurosci._ 10, 311 (2016). Article  PubMed  PubMed Central  Google Scholar  * Aso, T., Urayama, S.,


Fukuyama, H. & Murai, T. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals. _PLoS ONE_ 14,


e0222787 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Aso, T., Jiang, G., Urayama, S.-I. & Fukuyama, H. A resilient, non-neuronal source of the spatiotemporal lag


structure detected by bold signal-based blood flow tracking. _Front. Neurosci._ 11, 256 (2017). Article  PubMed  PubMed Central  Google Scholar  * Tong, Y. et al. Evaluating the effects of


systemic low frequency oscillations measured in the periphery on the independent component analysis results of resting state networks. _Neuroimage_ 76, 202–215 (2013). Article  PubMed 


Google Scholar  * Wanger, T. J., Janes, A. C. & Frederick, B. B. Spatial variation of changes in test–retest reliability of functional connectivity after global signal regression: the


effect of considering hemodynamic delay. _Hum. Brain Mapp._ 44, 668–678 (2023). Article  PubMed  Google Scholar  * Frederick, B. D., Nickerson, L. D. & Tong, Y. Physiological denoising


of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS). _Neuroimage_ 60, 1913–1923 (2012).


Article  PubMed  Google Scholar  * Tong, Y. & Frederick, B. D. Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global


circulatory origin for low-frequency oscillation signals in human brain. _Neuroimage_ 53, 553–564 (2010). Article  PubMed  Google Scholar  * Hu, J.-Y. et al. A novel approach for assessing


hypoperfusion in stroke using spatial independent component analysis of resting-state fMRI. _Hum. Brain Mapp._ 42, 5204–5216 (2021). Article  PubMed  PubMed Central  Google Scholar  *


Gonzalez-Castillo, J., Fernandez, I. S., Handwerker, D. A. & Bandettini, P. A. Ultra-slow fMRI fluctuations in the fourth ventricle as a marker of drowsiness. _Neuroimage_ 259, 119424


(2022). * Tanrıtanır, A. C. et al. The effect of scan length on the assessment of BOLD delay in ischemic stroke. _Front. Neurol._ 11, 381 (2020). Article  PubMed  PubMed Central  Google


Scholar  * Pinto, J., Bright, M. G., Bulte, D. P. & Figueiredo, P. Cerebrovascular reactivity mapping without gas challenges: a methodological guide. _Front. Physiol._ 11, 608475 (2021).


Article  PubMed  PubMed Central  Google Scholar  * Chi, N.-F. et al. Cerebral motor functional connectivity at the acute stage: an outcome predictor of ischemic stroke. _Sci. Rep._ 8, 16803


(2018). Article  PubMed  PubMed Central  Google Scholar  * Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between


wakefulness and sleep. _Neuron_ 82, 695–708 (2014). Article  CAS  PubMed  Google Scholar  * Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain


activity. _Nat. Commun._ 9, 395 (2018). Article  PubMed  PubMed Central  Google Scholar  * Bijsterbosch, J. et al. Investigations into within- and between-subject resting-state amplitude


variations. _Neuroimage_ 159, 57–69 (2017). Article  PubMed  Google Scholar  * Shinar, Z., Akselrod, S., Dagan, Y. & Baharav, A. Autonomic changes during wake–sleep transition: a heart


rate variability based approach. _Auton. Neurosci._ 130, 17–27 (2006). Article  PubMed  Google Scholar  * Douglas, N. J., White, D. P., Pickett, C. K., Weil, J. V. & Zwillich, C. W.


Respiration during sleep in normal man. _Thorax_ 37, 840–844 (1982). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, K. et al. Arousal impacts distributed hubs modulating the


integration of brain functional connectivity. _Neuroimage_ 258, 119364 (2022). Article  PubMed  Google Scholar  * Joshi, S. & Gold, J. I. Pupil size as a window on neural substrates of


cognition. _Trends Cogn. Sci._ 24, 466–480 (2020). Article  PubMed  PubMed Central  Google Scholar  * Ogoh, S. Interaction between the respiratory system and cerebral blood flow regulation.


_J. Appl. Physiol._ 127, 1197–1205 (2019). Article  CAS  PubMed  Google Scholar  * Allen, B., Jennings, J. R., Gianaros, P. J., Thayer, J. F. & Manuck, S. B. Resting high‐frequency heart


rate variability is related to resting brain perfusion. _Psychophysiology_ 52, 277–287 (2015). Article  PubMed  Google Scholar  * Tong, Y., Hocke, L. M., Fan, X., Janes, A. C. &


Frederick, B. D. Can apparent resting state connectivity arise from systemic fluctuations? _Front. Hum. Neurosci._ 9, 285 (2015). Article  PubMed  PubMed Central  Google Scholar  * Orban,


C., Kong, R., Li, J., Chee, M. W. L. & Yeo, B. T. Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity. _PLoS Biol._ 18,


e3000602 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Richter, S., Marsalek, K., Glatz, C. & Gundel, A. Task‐dependent differences in subjective fatigue scores. _J.


Sleep Res._ 14, 393–400 (2005). Article  CAS  PubMed  Google Scholar  * Baumann, H., Baumann, R., Gurk, C. & Wolter, F. Electrophysiological studies of central nervous performance during


monotony. _Electroencephalogr. Clin. Neurophysiol._ 24, 259–273 (1968). Article  CAS  PubMed  Google Scholar  * Fukunaga, M. et al. Large-amplitude, spatially correlated fluctuations in


BOLD fMRI signals during extended rest and early sleep stages. _Magn. Reson. Imaging_ 24, 979–992 (2006). Article  PubMed  Google Scholar  * Fultz, N. E. et al. Coupled electrophysiological,


hemodynamic, and cerebrospinal fluid oscillations in human sleep. _Science_ 366, 628–631 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duyn, J. H., Ozbay, P. S., Chang, C.


& Picchioni, D. Physiological changes in sleep that affect fMRI inference. _Curr. Opin. Behav. Sci._ 33, 42–50 (2020). Article  PubMed  Google Scholar  * Aso, T., Uematsu, A. &


Hayashi, T. Reliability of BOLD perfusion lag mapping depends on global signal amplitude. In _Proc._ _Organization for Human Brain Mapping (OHBM) 2023 Annual Meeting_ Poster 528 (2023). *


Bolt, T. et al. Widespread neural and autonomic system synchrony across the brain–body axis. Preprint at _bioRxiv_ https://doi.org/10.1101/2023.01.19.524818 (2024). * Lynch, C. J. et al.


Prevalent and sex-biased breathing patterns modify functional connectivity MRI in young adults. _Nat. Comm._ 11, 5290 (2020). * Bennett, H. C. & Kim, Y. Advances in studying whole mouse


brain vasculature using high-resolution 3D light microscopy imaging. _Neurophotonics_ 9, 021902 (2022). Article  PubMed  PubMed Central  Google Scholar  * Raz, A. et al. Ecological nuances


in functional magnetic resonance imaging (fMRI): psychological stressors, posture, and hydrostatics. _Neuroimage_ 25, 1–7 (2005). Article  PubMed  Google Scholar  * Golestani, A. M., Kwinta,


J. B., Strother, S. C., Khatamian, Y. B. & Chen, J. J. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence


of basal carbon dioxide. _Neuroimage_ 132, 301–313 (2016). Article  PubMed  Google Scholar  * Vijayakrishnan Nair, V. et al. Human CSF movement influenced by vascular low frequency


oscillations and respiration. _Front. Physiol._ 13, 940140 (2022). Article  PubMed  PubMed Central  Google Scholar  * Fagerström, K. O. Measuring degree of physical dependence to tobacco


smoking with reference to individualization of treatment. _Addict. Behav._ 3, 235–241 (1978). Article  PubMed  Google Scholar  * Frederick, B. B., Salo, T., Drucker, D. M., Stout, J. N.


rapidtide [Computer Software] (2016-2024). _GitHub_ https://github.com/bbfrederick/rapidtide (2016). * Birn, R. M. et al. The influence of physiological noise correction on test–retest


reliability of resting-state functional connectivity. _Brain Connect._ 4, 511–522 (2014). Article  PubMed  PubMed Central  Google Scholar  * Tong, Y., Yao, J., Chen, J. J. & Frederick,


B. D. The resting-state fMRI arterial signal predicts differential blood transit time through the brain. _J. Cereb. Blood Flow Metab._ 39, 1148–1160 (2019). Article  PubMed  Google Scholar 


Download references ACKNOWLEDGEMENTS This work was supported by grant no. 5R01DA039135-06 to A.C.J., the Intramural Research Program of the National Institutes of Health, the National


Institute on Drug Abuse (to A.C.J.), and grant nos 1RF1MH130637-01 and 1R21AG070383-01 to B.B.F. The funders had no role in study design, data collection and analysis, decision to publish or


preparation of the manuscript. AUTHOR INFORMATION Author notes * These authors jointly supervised this work: Amy C. Janes, Blaise B. Frederick. AUTHORS AND AFFILIATIONS * Department of


Psychiatry, Harvard University Medical School, Boston, MA, USA Cole Korponay & Blaise B. Frederick * McLean Hospital Brain Imaging Center, Belmont, MA, USA Cole Korponay & Blaise B.


Frederick * Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA Amy C. Janes Authors * Cole Korponay


View author publications You can also search for this author inPubMed Google Scholar * Amy C. Janes View author publications You can also search for this author inPubMed Google Scholar *


Blaise B. Frederick View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS C.K., A.C.J. and B.B.F. were responsible for study conceptualization,


data collection, curation and analysis, and for writing, reviewing and editing the manuscript. CORRESPONDING AUTHOR Correspondence to Cole Korponay. ETHICS DECLARATIONS COMPETING INTERESTS


The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Human Behaviour_ thanks Deborah Small, Wesley Vieira da Silva and the other anonymous reviewer(s) for


their contribution to the peer review of this work. Peer reviewer reports are available. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional


claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–6. REPORTING SUMMARY PEER REVIEW FILE RIGHTS AND


PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s);


author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Korponay, C., Janes, A.C. & Frederick, B.B. Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans.


_Nat Hum Behav_ 8, 1568–1580 (2024). https://doi.org/10.1038/s41562-024-01908-6 Download citation * Received: 13 September 2023 * Accepted: 03 May 2024 * Published: 19 June 2024 * Issue


Date: August 2024 * DOI: https://doi.org/10.1038/s41562-024-01908-6 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative