Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

Play all audios:

Loading...

ABSTRACT Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their


unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a ‘soft’ and predominantly ionic lattice, and their optical and electronic properties are


highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor


NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other


Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online


access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


ANTISOLVENT CONTROLS THE SHAPE AND SIZE OF ANISOTROPIC LEAD HALIDE PEROVSKITE NANOCRYSTALS Article Open access 17 October 2024 LIGAND-ENGINEERED BANDGAP STABILITY IN MIXED-HALIDE PEROVSKITE


LEDS Article 03 March 2021 DIFFUSION-MEDIATED SYNTHESIS OF HIGH-QUALITY ORGANIC–INORGANIC HYBRID PEROVSKITE NANOCRYSTALS Article 14 November 2024 REFERENCES * Huang, H. et al. Colloidal


lead halide perovskite nanocrystals: synthesis, optical properties and applications. _NPG Asia Mater._ 8, e328 (2016). CAS  Google Scholar  * Weidman, M. C., Goodman, A. J. & Tisdale, W.


A. Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. _Chem. Mater._ 29, 5019–5030 (2017). CAS  Google Scholar  * Kovalenko, M. V., Protesescu,


L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. _Science_ 358, 745–750 (2017). CAS  Google Scholar  * Murray, C. B.,


Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. _J. Am. Chem. Soc._ 115,


8706–8715 (1993). CAS  Google Scholar  * Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. _Chem. Rev._ 116, 4558–4596


(2016). CAS  Google Scholar  * Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. _Nat. Rev. Mater._ 2, 16099 (2017). Google Scholar  * Srivastava, V.


et al. Understanding and curing structural defects in colloidal gaas nanocrystals. _Nano Lett._ 17, 2094–2101 (2017). CAS  Google Scholar  * Schmidt, L. C. et al. Nontemplate synthesis of


CH3NH3PbBr3 perovskite nanoparticles. _J. Am. Chem. Soc._ 136, 850–853 (2014). CAS  Google Scholar  * Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl,


Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. _Nano Lett._ 15, 3692–3696 (2015). CAS  Google Scholar  * Huang, H. et al. Growth mechanism of


strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. _Nat. Commun._ 8, 996 (2017). Google Scholar  * Sichert, J. A. et al. Quantum size effect in organometal halide


perovskite nanoplatelets. _Nano Lett._ 15, 6521–6527 (2015). CAS  Google Scholar  * Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent


colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. _J. Am. Chem. Soc._ 137, 16008–16011 (2015). CAS  Google Scholar  * Akkerman, Q. A. et al. Solution


synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. _J. Am. Chem. Soc._ 138, 1010–1016 (2016). CAS  Google Scholar  * Tong, Y.


et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. _Angew. Chem. Int. Ed._ 55, 13887–13892 (2016). CAS  Google


Scholar  * Zhu, Z.-Y. et al. Solvent-Free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. _J. Phys. Chem. Lett._ 8, 1610–1614 (2017). CAS  Google Scholar


  * Pan, Q. et al. Microwave-assisted synthesis of high-quality all-inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and the application in light emitting diode. _J. Mater. Chem. C_


5, 10947–10954 (2017). CAS  Google Scholar  * Chen, S. et al. Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. _Adv. Energy Mater_.


1701543 (2017). Google Scholar  * Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. _Nano


Lett._ 16, 1869–1877 (2016). CAS  Google Scholar  * Dirin, D. N. et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous


silica matrixes. _Nano Lett._ 16, 5866–5874 (2016). CAS  Google Scholar  * Malgras, V. et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite


nanocrystals embedded in mesoporous silica. _J. Am. Chem. Soc._ 138, 13874–13881 (2016). CAS  Google Scholar  * Huang, H. et al. Lead halide perovskite nanocrystals in the research


spotlight: stability and defect-tolerance. _ACS Energy Lett._ 2, 2071–2083 (2017). CAS  Google Scholar  * Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying


defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. _MRS Commun._ 5, 265–275 (2015). CAS  Google Scholar  * Kang, J. & Wang, L.-W.


High defect tolerance in lead halide perovskite CsPbBr3. _J. Phys. Chem. Lett._ 8, 489–493 (2017). CAS  Google Scholar  * Koscher, B. A., Swabeck, J. K., Bronstein, N. D. & Alivisatos,


A. P. Essentially trap-free cspbbr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. _J. Am. Chem. Soc._ 139, 6566–6569 (2017). CAS  Google Scholar  * Liu, F. et al.


Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. _ACS Nano_ 11, 10373–10383 (2017). CAS  Google Scholar  * Zhu, H.


et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. _Science_ 353, 1409–1413 (2016). CAS  Google Scholar  * Bakulin, A. A. et al. Real-time


observation of organic cation reorientation in methylammonium lead iodide perovskites. _J. Phys. Chem. Lett._ 6, 3663–3669 (2015). CAS  Google Scholar  * Walsh, A. & Zunger, A.


Instilling defect tolerance in new compounds. _Nat. Mater._ 16, 964–967 (2017). CAS  Google Scholar  * Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of


nanocrystals. _Nat. Mater._ 15, 141–153 (2016). CAS  Google Scholar  * De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite


nanocrystals. _ACS Nano_ 10, 2071–2081 (2016). Google Scholar  * Trots, D. M. & Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. _J. Phys.


Chem. Solids_ 69, 2520–2526 (2008). CAS  Google Scholar  * Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations:


phase transitions, high mobilities, and near-infrared photoluminescent properties. _Inorg. Chem._ 52, 9019–9038 (2013). CAS  Google Scholar  * Swarnkar, A. et al. Quantum dot–induced phase


stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. _Science_ 354, 92–95 (2016). CAS  Google Scholar  * Protesescu, L. et al. Dismantling the “red wall” of colloidal


perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. _ACS Nano_ 11, 3119–3134 (2017). CAS  Google Scholar  * Wang, C., Chesman, A. S. R. &


Jasieniak, J. J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. _Chem. Commun._ 53, 232–235 (2017). CAS  Google Scholar  * Beal, R. E. et


al. Cesium lead halide perovskites with improved stability for tandem solar cells. _J. Phys. Chem. Lett._ 7, 746–751 (2016). CAS  Google Scholar  * Akkerman, Q. A., Meggiolaro, D., Dang, Z.,


De Angelis, F. & Manna, L. Fluorescent alloy CsPb_x_Mn1–_x_I3 perovskite nanocrystals with high structural and optical stability. _ACS Energy Lett._ 2, 2183–2186 (2017). CAS  Google


Scholar  * Zou, S. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. _J. Am. Chem. Soc._ 139, 11443–11450 (2017). CAS


  Google Scholar  * Hu, Y. et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. _ACS Energy Lett._ 2, 2219–2227 (2017). CAS  Google Scholar  * Ai, B.


et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. _J. Am. Ceram. Soc._ 99, 2875–2877 (2016). CAS  Google Scholar  * Liu, S., Luo, Y., He, M., Liang,


X. & Xiang, W. Novel CsPbI3 QDs glass with chemical stability and optical properties. _J. Eur. Ceram. Soc._ 38, 1998–2004 (2017). Google Scholar  * Ai, B. et al. Low temperature


photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. _Phys. Chem. Chem. Phys._ 19, 17349–17355 (2017). CAS  Google Scholar  * Di, X. et al. Use of long-term stable


CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs. _Chem. Commun._ 53, 11068–11071 (2017). CAS  Google Scholar  * Nedelcu, G. et al. Fast


anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). _Nano Lett._ 15, 5635–5640 (2015). CAS  Google Scholar  * Akkerman, Q. A. et al.


Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. _J. Am. Chem. Soc._ 137, 10276–10281 (2015). CAS  Google Scholar  * Akkerman, Q. A.


et al. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. _Nano Lett._ 17, 1924–1930


(2017). CAS  Google Scholar  * van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1–_x_M_x_Br3 perovskite nanocrystals through cation exchange. _J. Am. Chem. Soc._ 139,


4087–4097 (2017). Google Scholar  * Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. _ACS Energy Lett._ 2, 1416–1424 (2017). CAS 


Google Scholar  * De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. _Chem. Rev._ 116, 10852–10887 (2016). Google Scholar  * Liu, W. et al.


Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. _J. Am. Chem. Soc._ 138, 14954–14961 (2016). CAS  Google Scholar  * Guria, A. K., Dutta,


S. K., Adhikari, S. D. & Pradhan, N. Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges. _ACS Energy Lett._ 2, 1014–1021 (2017). CAS  Google Scholar  *


Palazon, F. et al. Changing the dimensionality of cesium lead bromide nanocrystals by reversible postsynthesis transformations with amines. _Chem. Mater._ 29, 4167–4171 (2017). CAS  Google


Scholar  * Wu, L. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism.


_Nano Lett._ 17, 5799–5804 (2017). CAS  Google Scholar  * Liu, Z. et al. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6


nanocrystals. _J. Am. Chem. Soc._ 139, 5309–5312 (2017). CAS  Google Scholar  * Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. _Science_ 354,


861–865 (2016). CAS  Google Scholar  * Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. _Science_ 354, 206–209 (2016). CAS 


Google Scholar  * Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. _ACS Nano_ 9, 1012–1057 (2015). CAS  Google Scholar  * Zhang, H. et al. Embedding perovskite


nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. _Adv. Funct. Mater._ 27, 1604382 (2017). Google Scholar  * Quan, L. N. et al. Highly emissive green


perovskite nanocrystals in a solid state crystalline matrix. _Adv. Mater._ 27, 1605945 (2017). Google Scholar  * Guhrenz, C. et al. Solid-state anion exchange reactions for color tuning of


CsPbX3 perovskite nanocrystals. _Chem. Mater._ 28, 9033–9040 (2016). CAS  Google Scholar  * Li, J. et al. 50-fold eqe improvement up to 6.27% of solution-processed all-inorganic perovskite


CsPbBr3 QLEDs via surface ligand density control. _Adv. Mater._ 29, 1603885 (2017). Google Scholar  * Chiba, T. et al. High-efficiency perovskite quantum-dot light-emitting devices by


effective washing process and interfacial energy level alignment. _ACS Appl. Mater. Interfaces_ 9, 18054–18060 (2017). CAS  Google Scholar  * Zhang, X. et al. Bright perovskite nanocrystal


films for efficient light-emitting devices. _J. Phys. Chem. Lett._ 7, 4602–4610 (2016). CAS  Google Scholar  * Deng, W. et al. Organometal halide perovskite quantum dot light-emitting


diodes. _Adv. Funct. Mater._ 26, 4797–4802 (2016). CAS  Google Scholar  * Akkerman, Q. A. et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. _Nat. Energy_ 2,


16194 (2016). Google Scholar  * Engler, R. E., MacDougall, L. S., Xu, J. B. & Willis, J. _Supplemental Statement on Life Cycle Assessmen_t (QD Vision, 2015); http://go.nature.com/2ERm8Fs


* Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. _Nat. Mater._ 15, 247–251 (2016). CAS  Google Scholar  * Zhou, C. et al.


Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. _Angew. Chem. Int. Edit._ 56, 9018–9022 (2017). CAS  Google Scholar  * Giustino, F. &


Snaith, H. J. Toward lead-free perovskite solar cells. _ACS Energy Lett._ 1, 1233–1240 (2016). CAS  Google Scholar  * McCall, K. M., Stoumpos, C. C., Kostina, S. S., Kanatzidis, M. G. &


Wessels, T. C. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (a = Cs, Rb; M = Bi, Sb). _Chem. Mater._ 29, 4129–4145 (2017). CAS  Google


Scholar  * Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A Bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. _J.


Am. Chem. Soc._ 138, 2138–2141 (2016). CAS  Google Scholar  * Volonakis, G. et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. _J. Phys. Chem. Lett._


7, 1254–1259 (2016). CAS  Google Scholar  * Raino, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton


fine structure. _ACS Nano_ 10, 2485–2490 (2016). CAS  Google Scholar  * Becker, M. A. et al. Bright triplet excitons in lead halide perovskites. _Nature_ 553, 189–193 (2018). CAS  Google


Scholar  * Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. _Nat. Nanotech._ 11, 661–671 (2016). CAS  Google Scholar  * Aharonovich, I., Englund, D. &


Toth, M. Solid-state single-photon emitters. _Nat. Photon._ 10, 631–641 (2016). CAS  Google Scholar  * Fu, M. et al. Neutral and charged exciton fine structure in single lead halide


perovskite nanocrystals revealed by magneto-optical spectroscopy. _Nano Lett._ 17, 2895–2901 (2017). CAS  Google Scholar  * Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3


perovskite nanocrystal detected by magneto-optical measurements. _Nano Lett._ 17, 5020–5026 (2017). CAS  Google Scholar  * Yin, C. et al. Bright-exciton fine-structure splittings in single


perovskite nanocrystals. _Phys. Rev. Lett._ 119, 026401 (2017). Google Scholar  * Nirmal, M. et al. Observation of the "dark exciton" in CdSe quantum dots. _Phys. Rev. Lett._ 75,


3728–3731 (1995). CAS  Google Scholar  * Tighineanu, P. et al. Single-photon superradiance from a quantum dot. _Phys. Rev. Lett._ 116, 163604 (2016). Google Scholar  * Park, Y.-S., Guo, S.,


Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. _ACS Nano_ 9, 10386–10393 (2015). CAS  Google Scholar  * Hu, F. et al.


Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. _Nano Lett._ 16, 6425–6430 (2016). CAS  Google Scholar  * Utzat, H. et al.


Probing linewidths and biexciton quantum yields of single cesium lead halide nanocrystals in solution. _Nano Lett._ 17, 6838–6846 (2017). CAS  Google Scholar  * Mizuochi, N. et al.


Electrically driven single-photon source at room temperature in diamond. _Nat. Photon._ 6, 299–303 (2012). CAS  Google Scholar  * Nothaft, M. et al. Electrically driven photon antibunching


from a single molecule at room temperature. _Nat. Commun._ 3, 628 (2012). Google Scholar  * Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite


nanocrystals. _ACS Nano_ 11, 3819–3831 (2017). CAS  Google Scholar  * Saidaminov, M. I. et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. _ACS Energy Lett._ 1,


840–845 (2016). CAS  Google Scholar  * Nikl, M. et al. Photoluminescence of Cs4PbBr6 crystals and thin films. _Chem. Phys. Lett._ 306, 280–284 (1999). CAS  Google Scholar  * Mitzi, D. B.


Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). _Chem. Mater._ 8, 791–800 (1996). CAS  Google Scholar  * Blancon, J.-C. et al. Extremely


efficient internal exciton dissociation through edge states in layered 2D perovskites. _Science_ 355, 1288–1292 (2017). CAS  Google Scholar  * Bhaumik, S. et al. Highly stable, luminescent


core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles. _Chem. Commun._ 52, 7118–7121 (2016). CAS  Google Scholar  * Chen, W. et al. Giant five-photon


absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. _Nat. Commun._ 8, 15198 (2017). CAS  Google Scholar  * Liu, F. et al. Highly luminescent phase-stable


CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. _ACS Nano_ 11, 10373–10383 (2017). CAS  Google Scholar  * Gross, E. F. & Kapliansky, A. A. A


spectroscopic study of absorption and luminescence of cuprous chloride, introduced into a crystal of rock salt. _Opt. Spektrosk._ 2, 204–209 (1957). CAS  Google Scholar  * Berry, C. R.


Structture and opticcal absorption of AgI microcrystals. _Phys. Rev. B_ 161, 848–851 (1967). CAS  Google Scholar  * Ekimov, A. I. & Onushchenko, A. A. Quantum size effects in


3-dimensional microscopic semiconductor crystals. _J. Exp. Theor. Phys. Lett._ 34, 345–349 (1981). Google Scholar  * Efros, A. L. Interband absorption of light in a semiconductor sphere.


_Sov. Phys. Semicond._ 16, 772–775 (1982). Google Scholar  * Wells, H. L. Über die Cäsium- und Kalium-Bleihalogenide. _Z. Anorg. Allg. Chem._ 3, 195–210 (1893). Google Scholar  * Moller, C.


K. A phase transition in caesium plumbochloride. _Nature_ 180, 981–982 (1957). CAS  Google Scholar  * Moller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. _Nature_


182, 1436–1436 (1958). CAS  Google Scholar  * Mizusaki, J., Arai, K. & Fueki, K. Ionic-conduction of the perovskite-type halides. _Solid State Ion._ 11, 203–211 (1983). CAS  Google


Scholar  * Radhakrishna, S. Polarised luminescence from lead centers in cesium halides. _J. Lumin._ 12, 409–411 (1976). Google Scholar  * Nikl, M. et al. Optical-properties of the Pb2+ based


aggregated phase in a CsCl host crystal – quantum-confinement effects. _Phys. Rev. B_ 51, 5192–5199 (1995). CAS  Google Scholar  * Nikl, M. et al. Quantum size effect in the excitonic


luminescence of CsPbX3-like quantum dots in CsX (X = Cl, Br) single crystal host. _J. Lumin._ 72, 377–379 (1997). Google Scholar  * Aceves, R. et al. Spectroscopy of CsPbBr3 quantum dots in


CsBr:Pb crystals. _J. Lumin._ 93, 27–41 (2001). CAS  Google Scholar  * Kondo, S., Sakai, T., Tanaka, H. & Saito, T. Amorphization-induced strong localization of electronic states in


CsPbBr3 and CsPbCl3 studied by optical absorption measurements. _Phys. Rev. B_ 58, 11401–11407 (1998). CAS  Google Scholar  * Kondo, S. et al. High intensity photoluminescence of


microcrystalline CsPbBr3 films: evidence for enhanced stimulated emission at room temperature. _Curr. Appl. Phys._ 7, 1–5 (2007). Google Scholar  * Kondo, S., Saito, T., Asada, H. &


Nakagawa, H. Stimulated emission from microcrystalline CsPbBr3 films: edge emission versus surface emission. _Mater. Sci. Eng. B_ 137, 156–161 (2007). CAS  Google Scholar  * Weber, D.


CH3NH3PbX3, ein Pb (II)-System mit Kubischer Perowskitstruktur. _Z. Naturforsch. B_ 33, 1443–1445 (1978). Google Scholar  * Papavassiliou, G. C. et al. Nanocrystalline/microcrystalline


materials based on lead-halide units. _J. Mater. Chem._ 22, 8271–8280 (2012). CAS  Google Scholar  * Papavassiliou, G. C., Pagona, G., Mousdis, G. A. & Karousis, N. Enhanced


phosphorescence from nanocrystalline/microcrystalline materials based on (CH3NH3)(1-naphthylmethyl ammonium)2Pb2Cl7 and similar compounds. _Chem. Phys. Lett._ 570, 80–84 (2013). CAS  Google


Scholar  * Aygüler, M. F. et al. Light-emitting electrochemical cells based on hybrid lead halide perovskite nanoparticles. _J. Phys. Chem. C_ 119, 12047–12054 (2015). Google Scholar  *


Weidman, M. C., Seitz, M., Stranks, S. D. & Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. _ACS Nano_ 10,


7830–7839 (2016). CAS  Google Scholar  * Protesescu, L. et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. _J. Am. Chem. Soc._ 138,


14202–14205 (2016). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS Q.A.A and L.M. thank the European Union’s Seventh Framework Programme (grant agreement no. 614897, ERC


Consolidator Grant ‘TRANS-NANO’) for funding. M.V.K. is grateful for financial support by the European Research Council under the European Union’s Seventh Framework Programme (grant


agreement no. 306733, ERC Starting Grant ‘NANOSOLID’). We thank N. Stadie for reading the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Nanochemistry Department, Istituto


Italiano di Tecnologia, Genova, Italy Quinten A. Akkerman & Liberato Manna * Università degli Studi di Genova, Genova, Italy Quinten A. Akkerman * Institute of Inorganic Chemistry,


Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland Gabriele Rainò & Maksym V. Kovalenko * Laboratory for Thin Films and Photovoltaics, Empa—Swiss Federal


Laboratories for Materials Science and Technology, Dübendorf, Switzerland Gabriele Rainò & Maksym V. Kovalenko * Kavli Institute of Nanoscience and Department of Chemical Engineering,


Delft University of Technology, Delft, the Netherlands Liberato Manna Authors * Quinten A. Akkerman View author publications You can also search for this author inPubMed Google Scholar *


Gabriele Rainò View author publications You can also search for this author inPubMed Google Scholar * Maksym V. Kovalenko View author publications You can also search for this author


inPubMed Google Scholar * Liberato Manna View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Maksym V. Kovalenko or


Liberato Manna. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Akkerman, Q.A., Rainò, G.,


Kovalenko, M.V. _et al._ Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. _Nature Mater_ 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4


Download citation * Received: 04 June 2017 * Accepted: 08 January 2018 * Published: 19 February 2018 * Issue Date: May 2018 * DOI: https://doi.org/10.1038/s41563-018-0018-4 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative