Play all audios:
ABSTRACT Sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the
failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious
glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival.
SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their
cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic
deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the
oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of
dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism
and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure,
thereby restoring the myocardium to a healthy molecular and cellular phenotype. KEY POINTS * Sodium–glucose cotransporter 2 (SGLT2) inhibitors have a direct cytoprotective effect on the
failing heart that is mediated by SGLT2-independent actions to increase nutrient-deprivation signalling and autophagic flux, thereby reducing cellular stress, promoting mitochondrial health
and renewal, and decreasing pro-inflammatory signalling and apoptosis. * The failing heart is characterized by upregulation of glucose transporter type 1 (GLUT1) levels, increased glycolysis
and impaired glucose oxidation, which lead to cytosolic accumulation of deleterious glucose intermediates that can activate mechanistic target of rapamycin (mTOR) and suppress
nutrient-deprivation signalling. * The failing heart has increased uptake but decreased oxidation of long-chain fatty acids, which impairs ATP production and leads to cytosolic accumulation
of deleterious lipid intermediates that result from impaired mitochondrial function and nutrient-deprivation signalling; the cytosolic accumulation of amino acids can promote the activation
of mTOR. * SGLT2 inhibitors reverse heart failure-related abnormalities in glucose, long-chain fatty acid and amino acid uptake and metabolism by inhibiting GLUT1 (potentially) and by
promoting nutrient-deprivation signalling and restoring mitochondrial health and renewal, which increases nutrient oxidation and oxidative phosphorylation and reduces the cytosolic
accumulation of deleterious glucose and lipid by-products. * The ketonaemia that accompanies SGLT2 inhibition does not act as an energy substrate for ATP production but might promote
nutrient-deprivation signalling, reduce the activation of pro-inflammatory pathways and increase autophagic flux. * SGLT2 inhibitors might facilitate ATP and haemoglobin production by
increasing the pool of bioreactive cytosolic Fe2+ as a result of the SGLT2 inhibitor-induced decrease in hepcidin and ferritin levels, thereby alleviating the state of inflammation-mediated
functional iron deficiency that is observed in heart failure. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS
OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn
more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to
full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our
FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE SGLT2 INHIBITOR EMPAGLIFLOZIN IMPROVES CARDIAC ENERGY STATUS VIA MITOCHONDRIAL ATP PRODUCTION IN DIABETIC MICE
Article Open access 17 March 2023 SGLT2 INHIBITION MITIGATES TRANSITION FROM ACUTE KIDNEY INJURY TO CHRONIC KIDNEY DISEASE BY SUPPRESSING FERROPTOSIS Article Open access 02 September 2024
EFFECTS OF EMPAGLIFLOZIN AND DAPAGLIFLOZIN IN ALLEVIATING CARDIAC FIBROSIS THROUGH SIRT6-MEDIATED OXIDATIVE STRESS REDUCTION Article Open access 28 December 2024 REFERENCES * Giugliano, D.
et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs. _Cardiovasc. Diabetol._ 20, 236 (2021). Article CAS PubMed
PubMed Central Google Scholar * Mordi, N. A. et al. Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic
heart failure: the RECEDE-CHF trial. _Circulation_ 142, 1713–1724 (2020). Article CAS PubMed PubMed Central Google Scholar * Scholtes, R. A. et al. The adaptive renal response for
volume homeostasis during 2 weeks of dapagliflozin treatment in people with type 2 diabetes and preserved renal function on a sodium-controlled diet. _Kidney Int. Rep._ 7, 1084–1092 (2022).
Article PubMed PubMed Central Google Scholar * Zannad, F. et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights from the EMPEROR program. _Eur.
Heart J._ 10.1093eurheartj/ehac495 (2022). * Januzzi, J. L. Jr. et al. EMPEROR-reduced trial committees and investigators. Prognostic importance of NT-proBNP and effect of empagliflozin in
the EMPEROR-reduced trial. _J. Am. Coll. Cardiol._ 78, 1321–1332 (2021). Article CAS PubMed Google Scholar * Nassif, M. E. et al. Empagliflozin effects on pulmonary artery pressure in
patients with heart failure: results from the EMBRACE-HF trial. _Circulation_ 143, 1673–1686 (2021). Article CAS PubMed Google Scholar * Omar, M. et al. Effect of empagliflozin on blood
volume redistribution in patients with chronic heart failure and reduced ejection fraction: an analysis from the Empire HF randomized clinical trial. _Circ. Heart Fail._ 15, e009156 (2022).
Article CAS PubMed Google Scholar * Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and
patients with type 2 diabetes. _Diabetes_ 65, 1190–1195 (2016). Article CAS PubMed Google Scholar * Petrie, M. C. et al. Effect of dapagliflozin on worsening heart failure and
cardiovascular death in patients with heart failure with and without diabetes. _JAMA_ 323, 1353–1368 (2020). Article CAS PubMed PubMed Central Google Scholar * Sayour, A. A. et al.
Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure. _Cardiovasc. Diabetol._ 19, 159 (2020). Article CAS
PubMed PubMed Central Google Scholar * Marfella, R. et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. _Pharmacol. Res._
184, 106448 (2022). Article CAS PubMed Google Scholar * Packer, M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the
nutrient deprivation signaling/autophagy hypothesis. _Circulation_ 146, 1383–1405 (2022). Article CAS PubMed PubMed Central Google Scholar * Packer, M. Cardioprotective effects of
sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors. _Circ. Heart Fail._ 13, e007197 (2020).
Article CAS PubMed Google Scholar * Vallon, V. & Nakagawa, T. Renal tubular handling of glucose and fructose in health and disease. _Compr. Physiol._ 12, 2995–3044 (2021). Article
PubMed PubMed Central Google Scholar * Pessoa, T. D., Campos, L. C., Carraro-Lacroix, L., Girardi, A. C. & Malnic, G. Functional role of glucose metabolism, osmotic stress, and
sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. _J. Am. Soc. Nephrol._ 25, 2028–2039 (2014). Article CAS PubMed
PubMed Central Google Scholar * Li, X. et al. Direct cardiac actions of the sodium glucose co-transporter 2 inhibitor empagliflozin improve myocardial oxidative phosphorylation and
attenuate pressure-overload heart failure. _J. Am. Heart Assoc._ 10, e018298 (2021). Article CAS PubMed PubMed Central Google Scholar * Borges-Júnior, F. A. et al. Empagliflozin
inhibits proximal tubule NHE3 activity, preserves GFR, and restores euvolemia in nondiabetic rats with induced heart failure. _J. Am. Soc. Nephrol._ 32, 1616–1629 (2021). Article PubMed
PubMed Central Google Scholar * Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits.
_Diabetologia_ 60, 568–573 (2017). Article CAS PubMed Google Scholar * Philippaert, K. et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose
cotransporter 2 inhibitor empagliflozin. _Circulation_ 143, 2188–2204 (2021). Article CAS PubMed PubMed Central Google Scholar * Mustroph, J. et al. Empagliflozin inhibits cardiac late
sodium current by Ca/calmodulin-dependent kinase II. _Circulation_ 146, 1259–1261 (2022). Article CAS PubMed PubMed Central Google Scholar * Vila-Petroff, M. et al.
Ca2+/calmodulin-dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na+/H+ exchanger activation. _J. Mol. Cell. Cardiol._ 49, 106–112 (2010). Article CAS
PubMed Google Scholar * Wagner, S. et al. Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload.
_Circ. Res._ 108, 555–565 (2011). Article CAS PubMed PubMed Central Google Scholar * Chung, Y. J. et al. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin
does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. _Cardiovasc. Res._ 117, 2794–2806 (2021). Article CAS PubMed Google Scholar * Baker, H. E. et al. Acute SGLT-2i
treatment improves cardiac efficiency during myocardial ischemia independent of Na+/H+ exchanger-1. _Int. J. Cardiol._ 363, 138–148 (2022). Article PubMed Google Scholar * Moopanar, T. R.
et al. AICAR inhibits the Na+/H+ exchanger in rat hearts–possible contribution to cardioprotection. _Pflug. Arch._ 453, 147–156 (2006). Article CAS Google Scholar * Liao, W., Rao, Z.,
Wu, L., Chen, Y. & Li, C. Cariporide attenuates doxorubicin-induced cardiotoxicity in rats by inhibiting oxidative stress, inflammation and apoptosis partly through regulation of
Akt/GSK-3β and Sirt1 signaling pathway. _Front. Pharmacol._ 13, 850053 (2022). Article CAS PubMed PubMed Central Google Scholar * Gupta, A. et al. Creatine kinase-mediated improvement
of function in failing mouse hearts provides causal evidence the failing heart is energy starved. _J. Clin. Invest._ 122, 291–302 (2012). Article CAS PubMed Google Scholar * Gupta, A.
& Houston, B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. _Heart Fail. Rev._ 22, 825–842
(2017). Article CAS PubMed Google Scholar * Carley, A. N. et al. Short-chain fatty acids outpace ketone oxidation in the failing heart. _Circulation_ 143, 1797–1808 (2021). Article CAS
PubMed PubMed Central Google Scholar * Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. _Science_ 370, 364–368 (2020). Article
CAS PubMed PubMed Central Google Scholar * Bedi, K. C. Jr et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human
heart failure. _Circulation_ 133, 706–716 (2016). Article CAS PubMed PubMed Central Google Scholar * Ferrannini, E., Mark, M. & Mayoux, E. C. V. protection in the EMPA-REG OUTCOME
trial: a “thrifty substrate” hypothesis. _Diabetes Care_ 39, 1108–1114 (2016). Article PubMed Google Scholar * Klip, I. T. et al. Iron deficiency in chronic heart failure: an
international pooled analysis. _Am. Heart J._ 165, 575–582 (2013). Article CAS PubMed Google Scholar * Hoes, M. F. et al. Iron deficiency impairs contractility of human cardiomyocytes
through decreased mitochondrial function. _Eur. J. Heart Fail._ 20, 910–919 (2018). Article CAS PubMed Google Scholar * Docherty, K. F. et al. Iron deficiency in heart failure and effect
of dapagliflozin: findings from DAPA-HF. _Circulation_ 146, 980–994 (2022). Article CAS PubMed PubMed Central Google Scholar * Sharma, S. et al. Intramyocardial lipid accumulation in
the failing human heart resembles the lipotoxic rat heart. _FASEB J._ 18, 1692–1700 (2004). Article CAS PubMed Google Scholar * Akkafa, F. et al. Reduced SIRT1 expression correlates with
enhanced oxidative stress in compensated and decompensated heart failure. _Redox Biol._ 6, 169–173 (2015). Article CAS PubMed PubMed Central Google Scholar * Wang, B. et al. AMPKα2
protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. _Circ. Res._ 122, 712–729 (2018). Article CAS PubMed Google Scholar * Faerber, G. et
al. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction. _J.
Thorac. Cardiovasc. Surg._ 141, 492–500 (2011). Article CAS PubMed Google Scholar * Castillo, E. C. et al. Mitochondrial hyperacetylation in the failing hearts of obese patients mediated
partly by a reduction in SIRT3: The involvement of the mitochondrial permeability transition pore. _Cell Physiol. Biochem._ 53, 465–479 (2019). Article CAS PubMed Google Scholar * Yano,
T. et al. Clinical impact of myocardial mTORC1 activation in nonischemic dilated cardiomyopathy. _J. Mol. Cell Cardiol._ 91, 6–9 (2016). Article CAS PubMed Google Scholar * Zhang, D. et
al. mTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. _J. Clin. Invest._ 120, 2805–2816 (2010). Article CAS PubMed PubMed Central Google Scholar
* Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. _Am. J. Physiol. Heart Circ. Physiol._ 309, H1375–H1389 (2015). Article CAS PubMed PubMed Central Google
Scholar * Chen, L. et al. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. _Front. Cell Dev. Biol._ 10, 871357 (2022). Article PubMed
PubMed Central Google Scholar * Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. _Nat. Rev. Mol. Cell Biol._ 19, 121–135 (2018). Article CAS
PubMed Google Scholar * Gao, G. et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. _Int. J. Mol.
Med._ 45, 195–209 (2020). PubMed Google Scholar * Tomczyk, M. M. et al. Mitochondrial sirtuin-3 (SIRT3) prevents doxorubicin-induced dilated cardiomyopathy by modulating protein
acetylation and oxidative stress. _Circ. Heart Fail._ 15, e008547 (2022). Article CAS PubMed PubMed Central Google Scholar * Li, Y. et al. AMPK inhibits cardiac hypertrophy by promoting
autophagy via mTORC1. _Arch. Biochem. Biophys._ 558, 79–86 (2014). Article CAS PubMed Google Scholar * Pires Da Silva, J. et al. SIRT1 protects the heart from ER stress-induced injury
by promoting eEF2K/eEF2-dependent autophagy. _Cells_ 9, 426 (2020). Article CAS PubMed PubMed Central Google Scholar * Zhang, T., Liu, C. F., Zhang, T. N., Wen, R. & Song, W. L.
Overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α protects cardiomyocytes from lipopolysaccharide-induced mitochondrial damage and apoptosis. _Inflammation_ 43,
1806–1820 (2020). Article CAS PubMed Google Scholar * Mizushima, N. & Levine, B. Autophagy in human diseases. _N. Engl. J. Med._ 383, 1564–1576 (2020). Article CAS PubMed Google
Scholar * Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. _Cell_ 176, 11–42 (2019). Article CAS PubMed PubMed Central Google Scholar * Lin,
B. et al. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. _Aging_ 13, 14482–14498 (2020). Article PubMed PubMed Central Google Scholar
* Han, Y. et al. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. _Redox Biol._ 34, 101538 (2020). Article CAS PubMed
PubMed Central Google Scholar * Chen, Y., He, T., Zhang, Z. & Zhang, J. Activation of SIRT1 by resveratrol alleviates pressure overload-induced cardiac hypertrophy via suppression of
TGF-β1 signaling. _Pharmacology_ 106, 667–681 (2021). Article CAS PubMed Google Scholar * Packer, M. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and
renal disease in states of perceived nutrient overabundance. _Circulation_ 141, 2095–2105 (2020). Article CAS PubMed Google Scholar * Packer, M. SGLT2 inhibitors produce cardiorenal
benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. _Diabetes Care_ 43, 508–511 (2020).
Article CAS PubMed Google Scholar * Ying, Y. et al. Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the
streptozotocin-induced diabetic mouse model. _Aging_ 11, 2822–2835 (2019). Article CAS PubMed PubMed Central Google Scholar * Koyani, C. N. et al. Empagliflozin protects heart from
inflammation and energy depletion via AMPK activation. _Pharmacol. Res._ 158, 104870 (2020). Article CAS PubMed Google Scholar * Lu, Q. et al. Empagliflozin attenuates ischemia and
reperfusion injury through LKB1/AMPK signaling pathway. _Mol. Cell Endocrinol._ 501, 110642 (2020). Article CAS PubMed Google Scholar * Wang, C. Y. et al. TLR9 binding to Beclin 1 and
mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. _Biology_ 9, 369 (2020). Article CAS PubMed PubMed Central Google Scholar
* Kondo, H. et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. _Eur. Heart J._ 42, 4947–4960 (2021). Article CAS PubMed PubMed Central Google
Scholar * Lee, C. C., Chen, W. T., Chen, S. Y. & Lee, T. M. Dapagliflozin attenuates arrhythmic vulnerabilities by regulating connexin43 expression via the AMPK pathway in
post-infarcted rat hearts. _Biochem. Pharmacol._ 192, 114674 (2021). Article CAS PubMed Google Scholar * Ren, F. F. et al. Dapagliflozin attenuates pressure overload-induced myocardial
remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress. _Acta Pharmacol. Sin._ 43, 1721–1732 (2022). Article CAS PubMed Google Scholar * Ren, C. et al.
Sodium-glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. _Front. Pharmacol._
12, 664181 (2021). Article CAS PubMed PubMed Central Google Scholar * Sun, P. et al. Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by
inhibiting the mTOR/HIF-1α pathway. _iScience_ 24, 102521 (2021). Article CAS PubMed PubMed Central Google Scholar * Tian, G. et al. Empagliflozin alleviates ethanol-induced
cardiomyocyte injury through inhibition of mitochondrial apoptosis via a SIRT1/PTEN/Akt pathway. _Clin. Exp. Pharmacol. Physiol._ 48, 837–845 (2021). Article CAS PubMed Google Scholar *
Yu, Y. W. et al. Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating
autophagy. _Front. Cardiovasc. Med._ 8, 768214 (2022). Article PubMed PubMed Central Google Scholar * He, L. et al. An effective sodium-dependent glucose transporter 2 inhibition,
canagliflozin, prevents development of hypertensive heart failure in Dahl salt-sensitive rats. _Front. Pharmacol._ 13, 856386 (2022). Article CAS PubMed PubMed Central Google Scholar *
Aragón-Herrera, A. et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. _Biochem. Pharmacol._ 170,
113677 (2019). Article PubMed Google Scholar * Li, X. et al. Direct cardiac actions of sodium-glucose cotransporter 2 inhibition improve mitochondrial function and attenuate oxidative
stress in pressure overload-induced heart failure. _Front. Cardiovasc. Med._ 9, 859253 (2022). Article CAS PubMed PubMed Central Google Scholar * Packer, M. Mutual antagonism of
hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders. _JACC Basic Transl. Sci._ 5, 961–968 (2020). Article PubMed PubMed Central Google Scholar * Chen, R. et al.
The acetylase/deacetylase couple CREB-binding protein/sirtuin 1 controls hypoxia-inducible factor 2 signaling. _J. Biol. Chem._ 287, 30800–30811 (2012). Article CAS PubMed PubMed Central
Google Scholar * He, X. et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. _J. Mol. Cell Cardiol._ 112, 104–113 (2017).
Article CAS PubMed PubMed Central Google Scholar * Yang, Z. et al. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2α signaling pathway
in arrhythmogenic cardiomyopathy. _FASEB J._ 36, e22410 (2022). Article CAS PubMed Google Scholar * Fitchett, D. et al. Mediators of the improvement in heart failure outcomes with
empagliflozin in the EMPA-REG OUTCOME trial. ESC. _Heart Fail._ 8, 4517–4527 (2021). Google Scholar * Umino, H. et al. High basolateral glucose increases sodium-glucose cotransporter 2 and
reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. _Sci. Rep._ 8, 6791 (2018). Article PubMed PubMed Central Google Scholar * Wicik, Z. et al. Characterization
of the SGLT2 interaction network and its regulation by SGLT2 inhibitors: a bioinformatic analysis. _Front. Pharmacol._ 13, 901340 (2022). Article CAS PubMed PubMed Central Google Scholar
* Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. _Circ. Res._ 128, 1487–1513 (2021). Article CAS PubMed PubMed
Central Google Scholar * Mohamed, T. M. A., Abouleisa, R. & Hill, B. G. Metabolic determinants of cardiomyocyte proliferation. _Stem Cell_ 40, 458–467 (2022). Article Google Scholar
* Shin, A. N. et al. SIRT1 increases cardiomyocyte binucleation in the heart development. _Oncotarget_ 9, 7996–8010 (2018). Article PubMed PubMed Central Google Scholar * Garbern, J. C.
et al. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. _Circulation_ 141, 285–300 (2020).
Article CAS PubMed Google Scholar * Zhang, P., Shan, T., Liang, X., Deng, C. & Kuang, S. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development
in mice. _Biochem. Biophys. Res. Commun._ 452, 53–59 (2014). Article CAS PubMed PubMed Central Google Scholar * Sánchez-Díaz, M., Nicolás-Ávila, J. Á., Cordero, M. D. & Hidalgo, A.
Mitochondrial adaptations in the growing heart. _Trends Endocrinol. Metab._ 31, 308–319 (2020). Article PubMed Google Scholar * Lehman, J. J. & Kelly, D. P. Transcriptional activation
of energy metabolic switches in the developing and hypertrophied heart. _Clin. Exp. Pharmacol. Physiol._ 29, 339–345 (2002). Article CAS PubMed Google Scholar * Gong, G. et al.
Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. _Science_ 350, aad2459 (2015). Article PubMed PubMed Central Google Scholar * Kantor, P. F., Robertson,
M. A., Coe, J. Y. & Lopaschuk, G. D. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. _J. Am. Coll.
Cardiol._ 33, 1724–1734 (1999). Article CAS PubMed Google Scholar * Bertrand, L. et al. Glucose transporters in cardiovascular system in health and disease. _Pflug. Arch._ 472, 1385–1399
(2020). Article CAS Google Scholar * Heilig, C. W. et al. Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy.
_Proc. Natl Acad. Sci. USA_ 100, 15613–15618 (2003). Article CAS PubMed PubMed Central Google Scholar * Nisr, R. B. & Affouritit, C. Insulin acutely improves mitochondrial function
of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation. _Biochim. Biophys. Acta_ 1837, 270–276 (2014). Article CAS PubMed PubMed Central Google
Scholar * Kato, T. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. _Circ. Heart Fail._ 3, 420–430 (2010). Article PubMed Google
Scholar * Pereira, R. O. et al. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left
ventricular dysfunction. _J. Am. Heart Assoc._ 2, e000301 (2013). Article PubMed PubMed Central Google Scholar * Fillmore, N. et al. Uncoupling of glycolysis from glucose oxidation
accompanies the development of heart failure with preserved ejection fraction. _Mol. Med._ 24, 3 (2018). Article PubMed PubMed Central Google Scholar * Zhabyeyev, P. et al.
Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. _Cardiovasc. Res._ 97, 676–685 (2013). Article CAS PubMed Google
Scholar * Kutsche, H. S. et al. Alterations in glucose metabolism during the transition to heart failure: the contribution of UCP-2. _Cells_ 9, 552 (2020). Article CAS PubMed PubMed
Central Google Scholar * Diakos, N. A. et al. Evidence of glycolysis up‐regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart:
implications for cardiac reloading and conditioning. _JACC Basic Transl. Sci._ 1, 432–444 (2016). Article PubMed PubMed Central Google Scholar * Bhaskar, P. T. et al. mTORC1
hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition. _Mol.
Cell Biol._ 29, 5136–5147 (2009). Article CAS PubMed PubMed Central Google Scholar * Sokolovska, J. et al. Influence of metformin on GLUT1 gene and protein expression in rat
streptozotocin diabetes mellitus model. _Arch. Physiol. Biochem._ 116, 137–145 (2010). Article CAS PubMed Google Scholar * Hölscher, M. et al. Unfavourable consequences of chronic
cardiac HIF-1α stabilization. _Cardiovasc. Res._ 94, 77–86 (2012). Article PubMed Google Scholar * Yang, J. & Holman, G. D. Long-term metformin treatment stimulates cardiomyocyte
glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis. _Endocrinology_ 147, 2728–2736 (2006). Article CAS PubMed Google Scholar * Li, X. et
al. Enhancement of glucose metabolism via PGC-1α participates in the cardioprotection of chronic intermittent hypobaric hypoxia. _Front. Physiol._ 7, 219 (2016). Article PubMed PubMed
Central Google Scholar * Murugasamy, K., Munjal, A. & Sundaresan, N. R. Emerging roles of SIRT3 in cardiac metabolism. _Front. Cardiovasc. Med._ 9, 850340 (2022). Article CAS PubMed
PubMed Central Google Scholar * Bersin, R. M. et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. _J. Am. Coll.
Cardiol._ 23, 1617–1624 (1994). Article CAS PubMed Google Scholar * Clanachan, A. S. Contribution of protons to post-ischemic Na+ and Ca2+ overload and left ventricular mechanical
dysfunction. _J. Cardiovasc. Electrophysiol._ 17, S141–S148 (2006). Article PubMed Google Scholar * Chen, Z. T. et al. Glycolysis inhibition alleviates cardiac fibrosis after myocardial
infarction by suppressing cardiac fibroblast activation. _Front. Cardiovasc. Med._ 8, 701745 (2021). Article CAS PubMed PubMed Central Google Scholar * Zheng, Z. et al. Enhanced
glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. _J. Infect. Dis._ 215, 1396–1406 (2017). Article CAS PubMed PubMed Central Google Scholar * Sen, S. et
al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. _J. Am. Heart Assoc._ 2, e004796 (2013). Article PubMed PubMed Central Google Scholar * Roberts,
D. J. & Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. _Cell Death Differ._ 22, 248–257 (2015). Article
CAS PubMed Google Scholar * Tran, D. H. et al. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. _Nat. Commun._ 11, 1771 (2020).
Article CAS PubMed PubMed Central Google Scholar * Marsh, S. A., Powell, P. C., Dell’italia, L. J. & Chatham, J. C. Cardiac O-GlcNAcylation blunts autophagic signaling in the
diabetic heart. _Life Sci._ 92, 648–656 (2013). Article CAS PubMed Google Scholar * Gelinas, R. et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. _Nat.
Commun._ 9, 374 (2018). Article PubMed PubMed Central Google Scholar * Chai, Q. et al. Knockdown of SGLT1 prevents the apoptosis of cardiomyocytes induced by glucose fluctuation via
relieving oxidative stress and mitochondrial dysfunction. _Biochem. Cell Biol._ 99, 356–363 (2021). Article CAS PubMed Google Scholar * Ferté, L. et al. New insight in understanding the
contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. _Am. J. Physiol. Heart Circ. Physiol._ 320, H838–H853 (2021). Article PubMed PubMed
Central Google Scholar * Bhatt, D. L. et al. SOLOIST-WHF trial investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. _N. Engl. J. Med._ 384, 117–128
(2021). Article CAS PubMed Google Scholar * Santos-Gallego, C. G. et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing
myocardial energetics. _J. Am. Coll. Cardiol._ 73, 1931–1944 (2019). Article CAS PubMed Google Scholar * Lauritsen, K. M. et al. SGLT2 inhibition does not affect myocardial fatty acid
oxidation or uptake, but reduces myocardial glucose uptake and blood flow in individuals with type 2 diabetes: a randomized double-blind, placebo-controlled crossover trial. _Diabetes_ 70,
800–808 (2021). Article CAS PubMed Google Scholar * Asrih, M., Lerch, R., Papageorgiou, I., Pellieux, C. & Montessuit, C. Differential regulation of stimulated glucose transport by
free fatty acids and PPARα or -δ agonists in cardiac myocytes. _Am. J. Physiol. Endocrinol. Metab._ 302, E872–E884 (2012). Article CAS PubMed Google Scholar * Yurista, S. R. et al.
Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. _Eur. J. Heart
Fail._ 21, 862–873 (2019). Article CAS PubMed Google Scholar * Zhang, H. et al. Empagliflozin decreases lactate generation in an NHE-1 dependent fashion and increases α-ketoglutarate
synthesis from palmitate in type ii diabetic mouse hearts. _Front. Cardiovasc. Med._ 7, 592233 (2020). Article CAS PubMed PubMed Central Google Scholar * Verma, S. et al. Empagliflozin
increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. _JACC Basic Transl. Sci._ 3, 575–587 (2018). Article
PubMed PubMed Central Google Scholar * Xie, B. et al. Empagliflozin restores cardiac metabolic flexibility in diet-induced obese C57BL6/J mice. _Curr. Res. Physiol._ 5, 232–239 (2022).
Article CAS PubMed PubMed Central Google Scholar * Uthman, L. et al. Novel anti-inflammatory effects of canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human
coronary artery endothelial cells. _Cardiovasc. Drugs Ther._ 35, 1083–1094 (2021). Article CAS PubMed Google Scholar * Joubert, M. et al. The sodium-glucose cotransporter 2 inhibitor
dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. _Diabetes_ 66, 1030–1040 (2017). Article CAS PubMed Google Scholar * Ducheix, S., Magré, J., Cariou, B.
& Prieur, X. Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. _Front. Endocrinol._ 9, 642 (2018). Article Google Scholar * Hawley, S. A. et al. The
Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. _Diabetes_ 65, 2784–2794 (2016). Article CAS
PubMed Google Scholar * Karlstaedt, A., Khanna, R., Thangam, M. & Taegtmeyer, H. Glucose 6-phosphate accumulates via phosphoglucose isomerase inhibition in heart muscle. _Circ. Res._
126, 60–74 (2020). Article CAS PubMed Google Scholar * Davogustto, G. E. et al. Metabolic remodeling precedes mTORC1-mediated cardiac hypertrophy. _Mol. Cell Cardiol._ 158, 115–127
(2021). Article CAS Google Scholar * Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M. & Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy
through TORC1 inhibition. _Mol. Cell_ 53, 521–533 (2014). Article CAS PubMed PubMed Central Google Scholar * Brainard, R. E. & Facundo, H. T. Cardiac hypertrophy drives PGC-1α
suppression associated with enhanced O-glycosylation. _Biochim. Biophys. Acta Mol. Basis Dis._ 1867, 166080 (2021). Article CAS PubMed Google Scholar * Bullen, J. W. et al. Cross-talk
between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). _J. Biol. Chem._ 289, 10592–10606 (2014). Article CAS PubMed PubMed
Central Google Scholar * Luiken, J. J. F. P., Nabben, M., Neumann, D. & Glatz, J. F. C. Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of
myocardial insulin resistance. _Biochim. Biophys. Acta Mol. Basis Dis._ 1866, 165775 (2020). Article CAS PubMed Google Scholar * van der Vusse, G. J., van Bilsen, M., Glatz, J. F.,
Hasselbaink, D. M. & Luiken, J. J. Critical steps in cellular fatty acid uptake and utilization. _Mol. Cell Biochem._ 239, 9–15 (2002). Article PubMed Google Scholar * Sorokina, N. et
al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied
hearts. _Circulation_ 115, 2033–2041 (2007). Article CAS PubMed Google Scholar * Warren, J. S. et al. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart.
_Proc. Natl Acad. Sci. USA_ 115, E7871–E7880 (2018). Article CAS PubMed PubMed Central Google Scholar * Fukushima, A. & Lopaschuk, G. D. Cardiac fatty acid oxidation in heart
failure associated with obesity and diabetes. _Biochim. Biophys. Acta_ 1861, 1525–1534 (2016). Article CAS PubMed Google Scholar * Osorio, J. C. et al. Impaired myocardial fatty acid
oxidation and reduced protein expression of retinoid x receptor-alpha in pacing-induced heart failure. _Circulation_ 106, 606–612 (2002). Article CAS PubMed Google Scholar * Doenst, T.
et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. _Cardiovasc. Res._ 86, 461–470 (2010).
Article CAS PubMed Google Scholar * Choi, Y. S. et al. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. _J.
Mol. Cell Cardiol._ 100, 64–71 (2016). Article CAS PubMed PubMed Central Google Scholar * Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction,
oxidative stress, and cell death in cardiomyocytes. _FASEB J._ 32, 1403–1416 (2018). Article CAS PubMed PubMed Central Google Scholar * Hunter, W. G. et al. Metabolomic profiling
identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic
impairments in clinical heart failure. _J. Am. Heart Assoc._ 5, e003190 (2016). Article PubMed PubMed Central Google Scholar * Gupte, A. A. et al. Mechanical unloading promotes
myocardial energy recovery in human heart failure. _Circ. Cardiovasc. Genet._ 7, 266–276 (2014). Article CAS PubMed PubMed Central Google Scholar * Previs, M. J. et al. Defects in the
proteome and metabolome in human hypertrophic cardiomyopathy. _Circ. Heart Fail._ 15, e009521 (2022). Article CAS PubMed PubMed Central Google Scholar * Dávila-Román, V. G. et al.
Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. _J. Am. Coll. Cardiol._ 40, 271–277 (2002). Article PubMed Google Scholar * Yan, J. et al.
Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. _Circulation_ 119, 2818–2828 (2009). Article
CAS PubMed PubMed Central Google Scholar * Heather, L. C. et al. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart.
_Cardiovasc. Res._ 72, 430–437 (2006). Article CAS PubMed Google Scholar * Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C. & Lehman, J. J. PGC-1alpha and ERRalpha target gene
downregulation is a signature of the failing human heart. _J. Mol. Cell Cardiol._ 46, 201–212 (2009). Article CAS PubMed Google Scholar * Knuuti, J. & Opie, L. H. The
adrenergic-fatty acid load in heart failure. _J. Am. Coll. Cardiol._ 54, 1637–1646 (2009). Article PubMed Google Scholar * Pohl, J. et al. Fatty acid transporters in plasma membranes of
cardiomyocytes in patients with dilated cardiomyopathy. _Eur. J. Med. Res._ 5, 438–442 (2000). CAS PubMed Google Scholar * Goldberg, I. J., Trent, C. M. & Schulze, C. Lipid metabolism
and toxicity in the heart. _Cell Metab._ 15, 805–812 (2012). Article CAS PubMed PubMed Central Google Scholar * Wu, Y., Song, P., Xu, J., Zhang, M. & Zou, M. H. Activation of
protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. _J. Biol. Chem._ 282, 9777–9788 (2007). Article CAS PubMed Google Scholar * Smolka, C. et al.
Cardiomyocyte-specific miR-100 overexpression preserves heart function under pressure overload in mice and diminishes fatty acid uptake as well as ROS production by direct suppression of
Nox4 and CD36. _FASEB J._ 35, e21956 (2021). Article CAS PubMed Google Scholar * He, L. et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac
hypertrophy caused by lipotoxicity. _Circulation_ 126, 1705–1716 (2012). Article CAS PubMed PubMed Central Google Scholar * Kolwicz, S. C. Jr. et al. Cardiac-specific deletion of acetyl
CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. _Circ. Res._ 111, 728–738 (2012). Article CAS PubMed PubMed Central Google Scholar * Shao, D. et
al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating Parkin-mediated mitophagy. _Circulation_ 142, 983–997 (2020). Article CAS PubMed
PubMed Central Google Scholar * Huang, W. P. et al. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. _Sci. Rep._ 11, 1159 (2021).
Article CAS PubMed PubMed Central Google Scholar * Brigadeau, F. et al. The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine
tachycardia-induced cardiomyopathy. _J. Cardiovasc. Pharmacol._ 49, 408–415 (2007). Article CAS PubMed Google Scholar * Zhang, J. et al. Fenofibrate increases cardiac autophagy via
FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. _Clin. Sci._ 130, 625–641 (2016). Article CAS Google Scholar * Ferreira, J. P. et al. Fenofibrate
and heart failure outcomes in patients with type 2 diabetes: analysis from ACCORD. _Diabetes Care_ 45, 1584–1591 (2022). Article CAS PubMed Google Scholar * Supruniuk, E., Mikłosz, A.
& Chabowski, A. The implication of PGC-1α on fatty acid transport across plasma and mitochondrial membranes in the insulin sensitive tissues. _Front. Physiol._ 8, 923 (2017). Article
PubMed PubMed Central Google Scholar * Wang, S. Y. et al. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development
of diabetic cardiomyopathy. _J. Mol. Med._ 98, 245–261 (2020). Article CAS PubMed Google Scholar * Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible
enzyme deacetylation. _Nature_ 464, 121–125 (2010). Article CAS PubMed PubMed Central Google Scholar * Wen, D. T. et al. Endurance exercise resistance to lipotoxic cardiomyopathy is
associated with cardiac NAD+/dSIR2/PGC-1α pathway activation in old _Drosophila_. _Biol. Open._ 8, bio044719 (2019). Article CAS PubMed PubMed Central Google Scholar * Chen, T. et al.
Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. _PLoS One_ 10, e0118909 (2015). Article PubMed PubMed Central Google Scholar
* Turdi, S. et al. Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. _J. Mol. Cell Cardiol._ 50, 712–722 (2011).
Article CAS PubMed Google Scholar * Sambandam, N. et al. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5’AMP-activated protein kinase
(AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique. _Eur. J. Biochem._ 271, 2831–2840 (2004). Article CAS PubMed Google Scholar * Bai, F.
et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. _Lipids Health Dis._ 18, 109 (2019). Article PubMed PubMed Central
Google Scholar * Viglino, C., Foglia, B. & Montessuit, C. Chronic AICAR treatment prevents metabolic changes in cardiomyocytes exposed to free fatty acids. _Pflug. Arch._ 471, 1219–1234
(2019). Article CAS Google Scholar * Adrian, L. et al. AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes. _Lipids_ 52, 737–750 (2017). Article CAS
PubMed Google Scholar * Pettersen, I. K. N. et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. _Mitochondrion_ 49, 97–110 (2019). Article CAS
PubMed Google Scholar * Zhu, Y. et al. Regulation of fatty acid metabolism by mTOR in adult murine hearts occurs independently of changes in PGC-1α. _Am. J. Physiol. Heart Circ. Physiol._
305, H41–H51 (2013). Article CAS PubMed PubMed Central Google Scholar * Moellmann, J. et al. The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of
cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. _Diabetes Obes. Metab._ 24, 2263–2272 (2022). Article CAS PubMed Google
Scholar * Wei, D. et al. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. _Life Sci._ 247, 117414 (2020).
Article CAS PubMed Google Scholar * Ferrannini, E. et al. Mechanisms of sodium-glucose cotransporter 2 inhibition: insights from large-scale proteomics. _Diabetes Care_ 43, 2183–2189
(2020). Article CAS PubMed Google Scholar * Furuhashi, M. et al. Possible increase in serum FABP4 level despite adiposity reduction by canagliflozin, an SGLT2 inhibitor. _PLoS ONE_ 11,
e0154482 (2016). Article PubMed PubMed Central Google Scholar * Grevengoed, T. J., Cooper, D. E., Young, P. A., Ellis, J. M. & Coleman, R. A. Loss of long-chain acyl-CoA synthetase
isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. _FASEB J._ 29, 4641–4653 (2015). Article CAS PubMed PubMed
Central Google Scholar * Crozier, S. J., Bolster, D. R., Reiter, A. K., Kimball, S. R. & Jefferson, L. S. Beta -oxidation of free fatty acids is required to maintain translational
control of protein synthesis in heart. _Am. J. Physiol. Endocrinol. Metab._ 283, E1144–E1150 (2002). Article CAS PubMed Google Scholar * Essop, M. F. et al. Reduced heart size and
increased myocardial fuel substrate oxidation in ACC2 mutant mice. _Am. J. Physiol. Heart Circ. Physiol._ 295, H256–H265 (2008). Article CAS PubMed PubMed Central Google Scholar * Xiao,
X. et al. Peroxisome proliferator-activated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMP-activated protein kinase. _J. Nutr. Biochem._ 21,
621–626 (2010). Article PubMed Google Scholar * Liu, G. Z. et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway. _Br. J.
Pharmacol._ 173, 1095–1109 (2016). Article CAS PubMed PubMed Central Google Scholar * Witham, W. G., Yester, K. A. & McGaffin, K. R. A high leucine diet mitigates cardiac injury
and improves survival after acute myocardial infarction. _Metabolism_ 62, 290–302 (2013). Article CAS PubMed Google Scholar * Kaye, D. M., Parnell, M. M. & Ahlers, B. A. Reduced
myocardial and systemic L-arginine uptake in heart failure. _Circ. Res._ 91, 1198–1203 (2002). Article CAS PubMed Google Scholar * Kimura, Y. et al. Usefulness of plasma branched-chain
amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. _Int. Heart J._ 61, 739–747 (2020). Article CAS PubMed Google Scholar * Sansbury, B. E. et
al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. _Circ. Heart Fail._ 7, 634–642 (2014). Article CAS PubMed PubMed Central Google Scholar * Uddin, G. M. et
al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. _Cardiovasc. Diabetol._ 18, 86 (2019). Article PubMed PubMed Central Google
Scholar * Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. _Circulation_ 133, 2038–2049 (2016). Article CAS PubMed PubMed Central Google Scholar *
Caragnano, A. et al. Autophagy and inflammasome activation in dilated cardiomyopathy. _J. Clin. Med._ 8, 1519 (2019). Article CAS PubMed PubMed Central Google Scholar * Shao, D. et al.
Glucose promotes cell growth by suppressing branched-chain amino acid degradation. _Nat. Commun._ 9, 2935 (2018). Article PubMed PubMed Central Google Scholar * Wang, W. et al. Defective
branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. _Am. J. Physiol. Heart Circ. Physiol._ 311, H1160–H1169 (2016).
Article PubMed Google Scholar * Renguet, E. et al. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. _Am. J. Physiol. Heart Circ. Physiol._
313, H432–H445 (2017). Article PubMed Google Scholar * Gong, Q. et al. SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective
effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. _Biomed. Pharmacother._ 152, 113222 (2022). Article CAS PubMed Google Scholar *
Kappel, B. A. et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. _Circulation_ 136, 969–972 (2017). Article CAS
PubMed Google Scholar * Palm, C. L., Nijholt, K. T., Bakker, B. M. & Westenbrink, B. D. Short-chain fatty acids in the metabolism of heart failure - rethinking the fat stigma.
_Front. Cardiovasc. Med._ 9, 915102 (2022). Article CAS PubMed PubMed Central Google Scholar * Sun, W. et al. Alterations of the gut microbiota in patients with severe chronic heart
failure. _Front. Microbiol._ 12, 813289 (2022). Article PubMed PubMed Central Google Scholar * Jóhannsson, E. et al. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat
model of congestive heart failure. _Circulation_ 104, 729–734 (2001). Article PubMed Google Scholar * Zhang, L. et al. Sodium butyrate attenuates angiotensin II-induced cardiac
hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism. _J. Cell Mol. Med._ 23, 8139–8150 (2019). Article CAS PubMed PubMed Central Google Scholar * Hallows,
W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. _Proc. Natl Acad. Sci. USA_ 103, 10230–10235 (2006). Article CAS PubMed PubMed Central
Google Scholar * Zhu, Y., Wu, J. & Yuan, S. Y. MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart. _Cell Physiol. Biochem._ 32, 663–674
(2013). Article CAS PubMed Google Scholar * Zeng, Z. et al. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis. _J. Cell Mol. Med._ 20, 1381–1391 (2016). Article
CAS PubMed PubMed Central Google Scholar * Saucedo-Orozco, H., Voorrips, S. N., Yurista, S. R., de Boer, R. A. & Westenbrink, B. D. SGLT2 inhibitors and ketone metabolism in heart
failure. _J. Lipid Atheroscler._ 11, 1–19 (2022). Article CAS PubMed PubMed Central Google Scholar * Lommi, J. et al. Blood ketone bodies in congestive heart failure. _J. Am. Coll.
Cardiol._ 28, 665–672 (1996). Article CAS PubMed Google Scholar * Nagao, M. et al. β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes.
_Biochem. Biophys. Res. Commun._ 475, 322–328 (2016). Article CAS PubMed Google Scholar * Nielsen, R. et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in
chronic heart failure patients. _Circulation_ 139, 2129–2141 (2019). Article CAS PubMed PubMed Central Google Scholar * Yurista, S. R. et al. Ketone ester treatment improves cardiac
function and reduces pathologic remodeling in preclinical models of heart failure. _Circ. Heart Fail._ 14, e007684 (2021). Article CAS PubMed Google Scholar * Horton, J. L. et al. The
failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. _JCI Insight_ 4, e124079 (2019). Article PubMed PubMed Central Google Scholar * Ho, K. L. et al. Increased ketone
body oxidation provides additional energy for the failing heart without improving cardiac efficiency. _Cardiovasc. Res._ 115, 1606–1616 (2019). Article CAS PubMed PubMed Central Google
Scholar * Uchihashi, M. et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. _Circ. Heart Fail._ 10,
e004417 (2017). Article CAS PubMed Google Scholar * Byrne, N. J. et al. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart
failure. _Circ. Heart Fail._ 13, e006573 (2020). Article CAS PubMed Google Scholar * Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF.
_Circ. Res._ 128, 232–245 (2021). Article CAS PubMed Google Scholar * Liu, Y. et al. Cardioprotective roles of β-hydroxybutyrate against doxorubicin induced cardiotoxicity. _Front.
Pharmacol._ 11, 603596 (2021). Article PubMed PubMed Central Google Scholar * Nakamura, M. et al. Dietary carbohydrates restriction inhibits the development of cardiac hypertrophy and
heart failure. _Cardiovasc. Res._ 117, 2365–2376 (2021). Article CAS PubMed Google Scholar * Oka, S. I. et al. β-Hydroxybutyrate, a ketone body, potentiates the antioxidant defense via
thioredoxin 1 upregulation in cardiomyocytes. _Antioxid_ 10, 1153 (2021). Article CAS Google Scholar * Kawakami, R. et al. Ketone body and FGF21 coordinately regulate fasting-induced
oxidative stress response in the heart. _Sci. Rep._ 12, 7338 (2022). Article CAS PubMed PubMed Central Google Scholar * Xu, M. et al. Choline ameliorates cardiac hypertrophy by
regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. _Cardiovasc. Res._ 115, 530–545 (2019). Article CAS PubMed Google Scholar * Thai, P. N. et al. Ketone ester
D-β-hydroxybutyrate-(R)-1,3 butanediol prevents decline in cardiac function in type 2 diabetic mice. _J. Am. Heart Assoc._ 10, e020729 (2021). Article CAS PubMed PubMed Central Google
Scholar * Nilsson, M. I. et al. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. _Mol. Genet Metab._ 137, 228–240
(2022). Article CAS PubMed Google Scholar * Wallenius, K. et al. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis.
_J. Lipid Res._ 63, 100176 (2022). Article CAS PubMed PubMed Central Google Scholar * Wolf, P. et al. Gluconeogenesis, but not glycogenolysis, contributes to the increase in endogenous
glucose production by SGLT-2 inhibition. _Diabetes Care_ 44, 541–548 (2021). Article CAS PubMed Google Scholar * Yang, X. et al. The diabetes medication canagliflozin promotes
mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. _Adipocyte_ 9, 484–494 (2020). Article CAS PubMed PubMed Central Google Scholar * Swe, M. T. et al.
Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. _Clin. Sci._ 133,
2415–2430 (2019). Article CAS Google Scholar * Erion, D. M. et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in
diabetic rats. _Proc. Natl Acad. Sci. USA_ 106, 11288–11293 (2009). Article CAS PubMed PubMed Central Google Scholar * Hirschey, M. D., Shimazu, T., Capra, J. A., Pollard, K. S. &
Verdin, E. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. _Aging_ 3, 635–642 (2011). Article CAS PubMed PubMed Central Google Scholar * Velasco, G., Geelen,
M. J. H. & Guzmán, M. Control of hepatic fatty acid oxidation by 5′-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. _Arch. Biochem.
Biophys._ 337, 169–175 (1997). Article CAS PubMed Google Scholar * Sengupta, S., Peterson, T. R., Laplante, M., Oh, S. & Sabatini, D. M. mTORC1 controls fasting-induced ketogenesis
and its modulation by ageing. _Nature_ 468, 1100–1104 (2010). Article CAS PubMed Google Scholar * McCarthy, C. G. et al. Ketone body β-hydroxybutyrate is an autophagy-dependent
vasodilator. _JCI Insight_ 6, e149037 (2021). Article PubMed PubMed Central Google Scholar * Ferrannini, E. et al. Renal handling of ketones in response to sodium-glucose cotransporter 2
inhibition in patients with type 2 diabetes. _Diabetes Care_ 40, 771–776 (2017). Article CAS PubMed Google Scholar * Heerspink, H. J. L. et al. DAPA-CKD trial committees and
investigators. Dapagliflozin in patients with chronic kidney disease. _N. Engl. J. Med._ 383, 1436–1446 (2020). Article CAS PubMed Google Scholar * Sahasrabudhe, V. et al. The effect of
renal impairment on the pharmacokinetics and pharmacodynamics of ertugliflozin in subjects with type 2 diabetes mellitus. _J. Clin. Pharmacol._ 57, 1432–1443 (2017). Article CAS PubMed
PubMed Central Google Scholar * Pietschner, R. et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure. _Cardiovasc. Diabetol._ 20, 219 (2021).
Article CAS PubMed PubMed Central Google Scholar * Selvaraj, S. et al. Metabolomic profiling of the effects of dapagliflozin in heart failure with reduced ejection fraction: DEFINE-HF.
_Circulation_ 146, 808–818 (2022). Article CAS PubMed Google Scholar * Marilly, E. et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular
outcome trials balancing their risks and benefits. _Diabetologia_ 65, 2000–2010 (2022). Article CAS PubMed Google Scholar * Packer, M. et al. EMPEROR-reduced trial investigators.
Cardiovascular and renal outcomes with empagliflozin in heart failure. _N. Engl. J. Med._ 383, 1413–1424 (2020). Article CAS PubMed Google Scholar * Oh, C. M. et al. Cardioprotective
potential of an SGLT2 inhibitor against doxorubicin-induced heart failure. _Korean Circ. J._ 49, 1183–1195 (2019). Article CAS PubMed PubMed Central Google Scholar * Byrne, N. J. et al.
Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. _JACC Basic Transl. Sci._ 2, 347–354 (2017). Article PubMed
PubMed Central Google Scholar * Abdurrachim, D. et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a
hyperpolarized 13C magnetic resonance spectroscopy study. _Diabetes Obes. Metab._ 21, 357–365 (2019). Article CAS PubMed Google Scholar * Kimura, T. et al. Inhibitory effects of
tofogliflozin on cardiac hypertrophy in Dahl salt-sensitive and salt-resistant rats fed a high-fat diet. _Int. Heart J._ 60, 728–735 (2019). Article CAS PubMed Google Scholar * Gaborit,
B. et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. _Cardiovasc. Diabetol._ 20, 57 (2021). Article CAS PubMed PubMed
Central Google Scholar * Tomita, I. et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. _Cell Metab._ 32,
404–419.e6 (2020). Article CAS PubMed Google Scholar * Papalia, F. et al. Cardiac energetics in patients with chronic heart failure and iron deficiency: an in-vivo 31P magnetic resonance
spectroscopy study. _Eur. J. Heart Fail._ 24, 716–723 (2022). Article CAS PubMed Google Scholar * Charles-Edwards, G. et al. Effect of iron isomaltoside on skeletal muscle energetics in
patients with chronic heart failure and iron deficiency. _Circulation_ 139, 2386–2398 (2019). Article CAS PubMed Google Scholar * Haddad, S. et al. Iron-regulatory proteins secure iron
availability in cardiomyocytes to prevent heart failure. _Eur. Heart J._ 38, 362–372 (2017). CAS PubMed Google Scholar * Long, M. et al. DGAT1 activity synchronises with mitophagy to
protect cells from metabolic rewiring by iron depletion. _EMBO J._ 41, e109390 (2022). Article CAS PubMed PubMed Central Google Scholar * Jang, S. et al. Elucidating the contribution of
mitochondrial glutathione to ferroptosis in cardiomyocytes. _Redox Biol._ 45, 102021 (2021). Article CAS PubMed PubMed Central Google Scholar * Tadokoro, T. et al.
Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. _JCI Insight_ 5, e132747 (2020). Article PubMed PubMed Central Google Scholar * Fang, X. et al.
Ferroptosis as a target for protection against cardiomyopathy. _Proc. Natl Acad. Sci. USA_ 116, 2672–2680 (2019). Article CAS PubMed PubMed Central Google Scholar * Komai, K., Kawasaki,
N. K., Higa, J. K. & Matsui, T. The role of ferroptosis in adverse left ventricular remodeling following acute myocardial infarction. _Cells_ 11, 1399 (2022). Article CAS PubMed
PubMed Central Google Scholar * Fang, X. et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. _Circ. Res._ 127, 486–501 (2020). Article CAS
PubMed Google Scholar * Nemeth, E. & Ganz, T. The role of hepcidin in iron metabolism. _Acta Haematol._ 122, 78–86 (2009). Article CAS PubMed PubMed Central Google Scholar *
Kralova, B. et al. Developmental changes in iron metabolism and erythropoiesis in mice with human gain-of-function erythropoietin receptor. _Am. J. Hematol._ 97, 1286–1299 (2022). Article
CAS PubMed Google Scholar * Fang, X., Ardehali, H., Min, J. & Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. _Nat. Rev. Cardiol._
https://doi.org/10.1038/s41569-022-00735-4 (2022). Article PubMed PubMed Central Google Scholar * Ito, J. et al. Iron derived from autophagy-mediated ferritin degradation induces
cardiomyocyte death and heart failure in mice. _eLife_ 10, e62174 (2021). Article CAS PubMed PubMed Central Google Scholar * Martínez-Ruiz, A. et al. Soluble TNFα receptor type I and
hepcidin as determinants of development of anemia in the long-term follow-up of heart failure patients. _Clin. Biochem._ 45, 1455–1458 (2012). Article PubMed Google Scholar * Masini, G.
et al. Criteria for iron deficiency in patients with heart failure. _J. Am. Coll. Cardiol._ 79, 341–351 (2022). Article CAS PubMed Google Scholar * Ghanim, H. et al. Dapagliflozin
suppresses hepcidin and increases erythropoiesis. _J. Clin. Endocrinol. Metab._ 105, dgaa057 (2020). Article PubMed Google Scholar * Thiele, K. et al. Effects of empagliflozin on
erythropoiesis in patients with type 2 diabetes: data from a randomized, placebo-controlled study. _Diabetes Obes. Metab._ 23, 2814–2818 (2021). Article CAS PubMed Google Scholar * Xin,
H. et al. Hydrogen sulfide attenuates inflammatory hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 deacetylation. _Antioxid. Redox Signal._ 24, 70–83 (2016). Article
CAS PubMed PubMed Central Google Scholar * Salazar, G. et al. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. _Autophagy_ 16, 1092–1110 (2020).
Article CAS PubMed Google Scholar * Crane, F. L., Navas, P., Low, H., Sun, I. L. & de Cabo, R. Sirtuin activation: a role for plasma membrane in the cell growth puzzle. _J. Gerontol.
A Biol. Sci. Med. Sci._ 68, 368–370 (2013). Article CAS PubMed Google Scholar * Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. _Cell Rep._ 13,
533–545 (2015). Article PubMed PubMed Central Google Scholar * Lin, J. et al. Mitochondrial dynamics and mitophagy in cardiometabolic disease. _Front. Cardiovasc. Med._ 9, 917135 (2022).
Article CAS PubMed PubMed Central Google Scholar * Cui, L. et al. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction
and toxicity. _Toxicol. Lett._ 275, 28–38 (2017). Article CAS PubMed Google Scholar * Li, X. et al. NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores
after blood loss. _Blood_ 136, 2691–2702 (2020). PubMed PubMed Central Google Scholar * Berezovsky, B. et al. Effect of erythropoietin on the expression of murine transferrin receptor 2.
_Int. J. Mol. Sci._ 22, 8209 (2021). Article CAS PubMed PubMed Central Google Scholar * Honda, H. et al. Associations among erythroferrone and biomarkers of erythropoiesis and iron
metabolism, and treatment with long-term erythropoiesis-stimulating agents in patients on hemodialysis. _PLoS ONE_ 11, e0151601 (2016). Article PubMed PubMed Central Google Scholar *
Waldman, M. et al. The role of heme oxygenase 1 in the protective effect of caloric restriction against diabetic cardiomyopathy. _Int. J. Mol. Sci._ 20, 2427 (2019). Article PubMed PubMed
Central Google Scholar * Li, D. et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation.
_Front. Pharmacol._ 12, 808480 (2022). Article PubMed PubMed Central Google Scholar * Docherty, K. F. et al. Effect of dapagliflozin on anaemia in DAPA-HF. _Eur. J. Heart Fail._ 23,
617–628 (2021). Article CAS PubMed Google Scholar * Yamada, T. et al. Analysis of time-dependent alterations of parameters related to erythrocytes after ipragliflozin initiation.
_Diabetol. Int._ 12, 197–206 (2020). Article PubMed PubMed Central Google Scholar * Kanamori, H. et al. Impact of autophagy on prognosis of patients with dilated cardiomyopathy. _J. Am.
Coll. Cardiol._ 79, 789–801 (2022). Article CAS PubMed Google Scholar * Hahn, V. S. et al. Myocardial gene expression signatures in human heart failure with preserved ejection fraction.
_Circulation_ 143, 120–134 (2021). Article CAS PubMed Google Scholar * Saito, T. et al. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart
failure predict improved prognosis. _Autophagy_ 12, 579–587 (2016). Article CAS PubMed PubMed Central Google Scholar * Saito, T. et al. Long-term prognostic value of ultrastructural
features in dilated cardiomyopathy: comparison with cardiac magnetic resonance. _Esc. Heart Fail._ 7, 682–691 (2020). Article PubMed PubMed Central Google Scholar * Watanabe, T. et al.
Restriction of food intake prevents postinfarction heart failure by enhancing autophagy in the surviving cardiomyocytes. _Am. J. Pathol._ 184, 1384–1394 (2014). Article CAS PubMed Google
Scholar * Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. _J. Clin. Invest._ 117, 1782–1793 (2007). Article CAS PubMed PubMed Central Google Scholar *
Nah, J. et al. Ulk1-dependent alternative mitophagy plays a protective role during pressure overload in the heart. _Cardiovasc. Res._ 118, 2638–2651 (2022). Article CAS PubMed PubMed
Central Google Scholar * Ghosh, R. et al. Chaperone mediated autophagy protects cardiomyocytes against hypoxic-cell death. _Am. J. Physiol. Cell Physiol._ 323, C1555–C1575 (2022). Article
CAS PubMed Google Scholar * Russo, M., Bono, E. & Ghigo, A. The interplay between autophagy and senescence in anthracycline cardiotoxicity. _Curr. Heart Fail. Rep._ 18, 180–190
(2021). Article CAS PubMed PubMed Central Google Scholar * Wang, K. et al. Cardioprotection of Klotho against myocardial infarction-induced heart failure through inducing autophagy.
_Mech. Ageing Dev._ 207, 111714 (2022). Article CAS PubMed Google Scholar * Li, Q. et al. Hypoxia acclimation protects against heart failure postacute myocardial infarction via
Fundc1-mediated mitophagy. _Oxid. Med. Cell Longev._ 2022, 8192552 (2022). PubMed PubMed Central Google Scholar * Li, L. et al. ATP6AP2 knockdown in cardiomyocyte deteriorates heart
function via compromising autophagic flux and NLRP3 inflammasome activation. _Cell Death Discov._ 8, 161 (2022). Article CAS PubMed PubMed Central Google Scholar * Deng, Z. et al. DNA
methyltransferase 1 (DNMT1) suppresses mitophagy and aggravates heart failure via the microRNA-152-3p/ETS1/RhoH axis. _Lab. Invest._ 102, 782–793 (2022). Article CAS PubMed Google Scholar
Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Baylor Heart and Vascular Institute, Dallas, TX, USA Milton Packer * Imperial College London, London, UK Milton Packer
Authors * Milton Packer View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Milton Packer. ETHICS DECLARATIONS
COMPETING INTERESTS During the past 3 years, M.P. has received consulting fees from AbbVie, Actavis, Amarin, Amgen, AstraZeneca, Boehringer Ingelheim, Caladrius, Casana, CSL Behring,
Cytokinetics, Imara, Lilly, Moderna, Novartis, Reata, Relypsa and Salamandra, entirely related to the design and execution of clinical trials. PEER REVIEW PEER REVIEW INFORMATION _Nature
Reviews Cardiology_ thanks Gary Lopaschuk, Christoph Maack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S
NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a
society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Packer, M. SGLT2
inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. _Nat Rev Cardiol_ 20, 443–462 (2023). https://doi.org/10.1038/s41569-022-00824-4 Download citation
* Accepted: 29 November 2022 * Published: 06 January 2023 * Issue Date: July 2023 * DOI: https://doi.org/10.1038/s41569-022-00824-4 SHARE THIS ARTICLE Anyone you share the following link
with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt
content-sharing initiative