Characterizing cis-regulatory elements using single-cell epigenomics

Characterizing cis-regulatory elements using single-cell epigenomics

Play all audios:

Loading...

ABSTRACT Cell type-specific gene expression patterns and dynamics during development or in disease are controlled by _cis_-regulatory elements (CREs), such as promoters and enhancers.


Distinct classes of CREs can be characterized by their epigenomic features, including DNA methylation, chromatin accessibility, combinations of histone modifications and conformation of


local chromatin. Tremendous progress has been made in cataloguing CREs in the human genome using bulk transcriptomic and epigenomic methods. However, single-cell epigenomic and multi-omic


technologies have the potential to provide deeper insight into cell type-specific gene regulatory programmes as well as into how they change during development, in response to environmental


cues and through disease pathogenesis. Here, we highlight recent advances in single-cell epigenomic methods and analytical tools and discuss their readiness for human tissue profiling.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54


other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and


online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS INTERPRETING NON-CODING DISEASE-ASSOCIATED HUMAN VARIANTS USING SINGLE-CELL EPIGENOMICS Article 09 May 2023 SINGLE-CELL MULTI-OME REGRESSION MODELS IDENTIFY FUNCTIONAL AND


DISEASE-ASSOCIATED ENHANCERS AND ENABLE CHROMATIN POTENTIAL ANALYSIS Article Open access 21 March 2024 LOW INPUT CAPTURE HI-C (LICHI-C) IDENTIFIES PROMOTER-ENHANCER INTERACTIONS AT


HIGH-RESOLUTION Article Open access 17 January 2023 REFERENCES * Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. _Cell_ 152, 1237–1251 (2013).


Article  CAS  Google Scholar  * Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. _Cell_ 157, 13–25 (2014). Article  CAS  Google Scholar


  * Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. _Nat. Rev. Genet._ 22, 154–168 (2021). Article  CAS  Google Scholar  * ENCODE Project


Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. _Nature_ 583, 699–710 (2020). Article  Google Scholar  * Cramer, P. Organization and regulation of


gene transcription. _Nature_ 573, 45–54 (2019). Article  CAS  Google Scholar  * Doni Jayavelu, N., Jajodia, A., Mishra, A. & Hawkins, R. D. Candidate silencer elements for the human and


mouse genomes. _Nat. Commun._ 11, 1061 (2020). Article  CAS  Google Scholar  * Gisselbrecht, S. S. et al. Transcriptional silencers in Drosophila serve a dual role as transcriptional


enhancers in alternate cellular contexts. _Mol. Cell_ 77, 324–337 (2020). Article  CAS  Google Scholar  * Pang, B. & Snyder, M. P. Systematic identification of silencers in human cells.


_Nat. Genet._ 52, 254–263 (2020). Article  CAS  Google Scholar  * Segert, J. A., Gisselbrecht, S. S. & Bulyk, M. L. Transcriptional silencers: driving gene expression with the brakes on.


_Trends Genet._ 37, 514–527 (2021). Article  CAS  Google Scholar  * Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. _Science_ 375, 566–570


(2022). Article  CAS  Google Scholar  * Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. _Cell_ 124, 47–59


(2006). Article  CAS  Google Scholar  * Pennacchio, L. A. & Rubin, E. M. Comparative genomic tools and databases: providing insights into the human genome. _J. Clin. Invest._ 111,


1099–1106 (2003). Article  CAS  Google Scholar  * Thurman, R. E. et al. The accessible chromatin landscape of the human genome. _Nature_ 489, 75–82 (2012). Article  CAS  Google Scholar  *


Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. _Cell_ 132, 311–322 (2008). Article  CAS  Google Scholar  * Buenrostro, J. D., Giresi,


P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome


position. _Nat. Methods_ 10, 1213–1218 (2013). Article  CAS  Google Scholar  * Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. _Nature_ 462,


315–322 (2009). Article  CAS  Google Scholar  * Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. _Nature_ 446,


572–576 (2007). Article  CAS  Google Scholar  * Barski, A. et al. High-resolution profiling of histone methylations in the human genome. _Cell_ 129, 823–837 (2007). Article  CAS  Google


Scholar  * Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. _Science_ 316, 1497–1502 (2007). Article  CAS  Google Scholar 


* Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. _Nature_ 448, 553–560 (2007). Article  CAS  Google Scholar  * Dekker, J. &


Mirny, L. The 3D genome as moderator of chromosomal communication. _Cell_ 164, 1110–1121 (2016). Article  CAS  Google Scholar  * Rowley, M. J. & Corces, V. G. Organizational principles


of 3D genome architecture. _Nat. Rev. Genet._ 19, 789–800 (2018). Article  CAS  Google Scholar  * Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding


principles of the human genome. _Science_ 326, 289–293 (2009). Article  CAS  Google Scholar  * Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of


chromatin looping. _Cell_ 159, 1665–1680 (2014). Article  CAS  Google Scholar  * Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human


disease loci by integrative epigenomics. _Nature_ 590, 300–307 (2021). Article  CAS  Google Scholar  * Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive


sites. _Nature_ 584, 244–251 (2020). Article  CAS  Google Scholar  * Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. _Nature_ 518, 317–330


(2015). Article  Google Scholar  * Grubert, F. et al. Landscape of cohesin-mediated chromatin loops in the human genome. _Nature_ 583, 737–743 (2020). Article  CAS  Google Scholar  *


Calderon, D. et al. Landscape of stimulation-responsive chromatin across diverse human immune cells. _Nat. Genet._ 51, 1494–1505 (2019). Article  CAS  Google Scholar  * Zhang, K. et al. A


single-cell atlas of chromatin accessibility in the human genome. _Cell_ 184, 5985–6001 (2021). THIS PAPER DESCRIBES THE INTEGRATED SCIATAC-SEQ ANALYSIS OF A LARGE PANEL OF ADULT AND FETAL


HUMAN TISSUE TO CATALOG CCRES IN 222 CELL CLUSTERS. Article  CAS  Google Scholar  * Nurk, S. et al. The complete sequence of a human genome. _Science_ 376, 44–53 (2022). Article  CAS  Google


Scholar  * Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: in the right place at the right time. _Science_ 361, 1336–1340 (2018). Article  CAS  Google Scholar  * Chen, Z.


& Zhang, Y. Role of mammalian DNA methyltransferases in development. _Annu. Rev. Biochem._ 89, 135–158 (2020). Article  CAS  Google Scholar  * Wu, X. & Zhang, Y. TET-mediated active


DNA demethylation: mechanism, function and beyond. _Nat. Rev. Genet._ 18, 517–534 (2017). Article  CAS  Google Scholar  * Yin, Y. et al. Impact of cytosine methylation on DNA binding


specificities of human transcription factors. _Science_ 356, eaaj2239 (2017). Article  Google Scholar  * He, Y. & Ecker, J. R. Non-CG methylation in the human genome. _Annu. Rev.


Genomics Hum. Genet._ 16, 55–77 (2015). Article  CAS  Google Scholar  * Miura, F., Enomoto, Y., Dairiki, R. & Ito, T. Amplification-free whole-genome bisulfite sequencing by


post-bisulfite adaptor tagging. _Nucleic Acids Res._ 40, e136 (2012). Article  CAS  Google Scholar  * Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and


epigenetic heterogeneity. _Nat. Methods_ 13, 229–232 (2016). Article  CAS  Google Scholar  * Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic


heterogeneity. _Nat. Methods_ 11, 817–820 (2014). THIS PAPER DESCRIBES THE FIRST SINGLE-CELL BISULFITE SEQUENCING APPROACH. Article  CAS  Google Scholar  * Farlik, M. et al. Single-cell DNA


methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. _Cell Rep._ 10, 1386–1397 (2015). Article  CAS  Google Scholar  * Luo, C. et al. Single-cell methylomes


identify neuronal subtypes and regulatory elements in mammalian cortex. _Science_ 357, 600–604 (2017). Article  CAS  Google Scholar  * Luo, C. et al. Robust single-cell DNA methylome


profiling with snmC-seq2. _Nat. Commun._ 9, 3824 (2018). Article  Google Scholar  * Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. _Nature_ 598,


103–110 (2021). Article  CAS  Google Scholar  * Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. _Nature_ 598, 120–128 (2021). THIS PAPER DESCRIBES


APPLICATION OF SNMC-SEQ2 TO MOUSE BRAIN TISSUES RESULTING IN IDENTIFICATION 161 BRAIN CELL TYPES AND CELL-TYPE SPECIFIC CRES. Article  CAS  Google Scholar  * Guo, H. et al. Single-cell


methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. _Genome Res._ 23, 2126–2135 (2013). Article  CAS  Google


Scholar  * Shareef, S. J. et al. Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells. _Nat. Biotechnol._


https://doi.org/10.1038/s41587-021-00910-x (2021). Article  Google Scholar  * Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. _Nat.


Biotechnol._ 36, 428–431 (2018). Article  CAS  Google Scholar  * Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. _Cell Genom._


https://doi.org/10.1016/j.xgen.2022.100107 (2022). Article  Google Scholar  * Zaret, K. S. Pioneer transcription factors initiating gene network changes. _Annu. Rev. Genet._ 54, 367–385


(2020). Article  CAS  Google Scholar  * Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. _Nature_ 528, 142–146 (2015). Article 


CAS  Google Scholar  * Gao, W. et al. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells. _Nucleic Acids Res._ 49, e56 (2021). Article  CAS  Google


Scholar  * Chen, X., Miragaia, R. J., Natarajan, K. N. & Teichmann, S. A. A rapid and robust method for single cell chromatin accessibility profiling. _Nat. Commun._ 9, 5345 (2018).


Article  CAS  Google Scholar  * Xu, W. et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility. _Nat. Protoc._ 16, 4084–4107 (2021).


Article  CAS  Google Scholar  * Graybuck, L. T. et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. _Neuron_ 109, 1449–1464 (2021). Article  CAS  Google Scholar  *


Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. _Cell Rep._ 34, 108754 (2021). Article  CAS  Google Scholar  * Mezger, A.


et al. High-throughput chromatin accessibility profiling at single-cell resolution. _Nat. Commun._ 9, 3647 (2018). Article  Google Scholar  * Buenrostro, J. D. et al. Single-cell chromatin


accessibility reveals principles of regulatory variation. _Nature_ 523, 486–490 (2015). THIS PAPER INTRODUCES SCATAC-SEQ USING MICROFLUIDICS. Article  CAS  Google Scholar  * Satpathy, A. T.


et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. _Nat. Biotechnol._ 37, 925–936 (2019). THIS PAPER DESCRIBES A


DROPLET-BASED SCATAC-SEQ PROCEDURE. Article  CAS  Google Scholar  * Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. _Nat.


Biotechnol._ 37, 916–924 (2019). THIS PAPER INTRODUCES THE COMBINATION OF COMBINATORIAL INDEXING WITH DROPLET-BASED APPROACHES FOR SCATAC-SEQ. Article  CAS  Google Scholar  * Cusanovich, D.


A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. _Science_ 348, 910–914 (2015). THIS PAPER INTRODUCES SCATAC-SEQ USING COMBINATORIAL


INDEXING. Article  CAS  Google Scholar  * Wang, K. et al. Simple oligonucleotide-based multiplexing of single-cell chromatin accessibility. _Mol. Cell_ 81, 4319–4332 (2021). Article  CAS 


Google Scholar  * De Rop, F. et al. HyDrop enables droplet based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads. _Elife_ https://doi.org/10.7554/eLife.73971


(2022). Article  Google Scholar  * Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. _Science_ https://doi.org/10.1126/science.aba7612 (2020). THIS PAPER DESCRIBES


THREE-ROUND INDEXING FOR SCIATAC-SEQ TO GENERATE A FETAL TISSUE SINGLE-CELL CHROMATIN ACCESSIBILITY ATLAS. Article  Google Scholar  * Sinnamon, J. R. et al. The accessible chromatin


landscape of the murine hippocampus at single-cell resolution. _Genome Res._ 29, 857–869 (2019). Article  CAS  Google Scholar  * Cusanovich, D. A. et al. A single-cell atlas of in vivo


mammalian chromatin accessibility. _Cell_ 174, 1309–1324 (2018). Article  CAS  Google Scholar  * Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse


forebrain reveals cell-type-specific transcriptional regulation. _Nat. Neurosci._ 21, 432–439 (2018). Article  CAS  Google Scholar  * Li, Y. E. et al. An atlas of gene regulatory elements in


adult mouse cerebrum. _Nature_ 598, 129–136 (2021). THIS PAPER DESCRIBES THE APPLICATION OF SNATAC-SEQ TO MOUSE BRAIN TISSUES RESULTING IN IDENTIFICATION OF 160 BRAIN CELL TYPES AND


CELL-TYPE SPECIFIC CRES. Article  CAS  Google Scholar  * LaFave, L. M. et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. _Cancer Cell_ 38,


212–228 (2020). Article  CAS  Google Scholar  * Cusanovich, D. A. et al. The cis-regulatory dynamics of embryonic development at single-cell resolution. _Nature_ 555, 538–542 (2018). Article


  CAS  Google Scholar  * Thornton, C. A. et al. Spatially mapped single-cell chromatin accessibility. _Nat. Commun._ 12, 1274 (2021). Article  CAS  Google Scholar  * Lake, B. B. et al.


Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. _Nat. Biotechnol._ 36, 70–80 (2018). Article  CAS  Google Scholar  * Mulqueen, R. M. et


al. High-content single-cell combinatorial indexing. _Nat. Biotechnol._ https://doi.org/10.1038/s41587-021-00962-z (2021). Article  Google Scholar  * Regev, A. et al. The human cell atlas.


_Elife_ https://doi.org/10.7554/eLife.27041 (2017). Article  Google Scholar  * Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. _Nat. Rev. Genet._ 17, 487–500


(2016). Article  CAS  Google Scholar  * Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. _Nat. Genet._ 39,


311–318 (2007). Article  CAS  Google Scholar  * Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. _Nat. Rev. Genet._ 22, 38–58 (2021). Article 


CAS  Google Scholar  * Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? _Mol. Cell_ 49, 825–837 (2013). Article  CAS  Google Scholar  * Rotem, A. et al.


Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. _Nat. Biotechnol._ 33, 1165–1172 (2015). THIS PAPER DESCRIBES THE FIRST SCCHIP-SEQ PROTOCOL. Article  CAS  Google


Scholar  * Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. _Nat. Genet._ 51, 1060–1066 (2019). Article  CAS  Google


Scholar  * Ai, S. et al. Profiling chromatin states using single-cell itChIP-seq. _Nat. Cell Biol._ 21, 1164–1172 (2019). Article  CAS  Google Scholar  * Schmid, M., Durussel, T. &


Laemmli, U. K. ChIC and ChEC; genomic mapping of chromatin proteins. _Mol. Cell_ 16, 147–157 (2004). CAS  Google Scholar  * Skene, P. J. & Henikoff, S. An efficient targeted nuclease


strategy for high-resolution mapping of DNA binding sites. _Elife_ https://doi.org/10.7554/eLife.21856 (2017). Article  Google Scholar  * Kaya-Okur, H. S. et al. CUT&Tag for efficient


epigenomic profiling of small samples and single cells. _Nat. Commun._ 10, 1930 (2019). Article  Google Scholar  * Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing


(scChIC-seq) to profile histone modification. _Nat. Methods_ 16, 323–325 (2019). Article  CAS  Google Scholar  * Hainer, S. J., Boskovic, A., McCannell, K. N., Rando, O. J. & Fazzio, T.


G. Profiling of pluripotency factors in single cells and early embryos. _Cell_ 177, 1319–1329 (2019). Article  CAS  Google Scholar  * Ku, W. L., Pan, L., Cao, Y., Gao, W. & Zhao, K.


Profiling single-cell histone modifications using indexing chromatin immunocleavage sequencing. _Genome Res._ 31, 1831–1842 (2021). Article  Google Scholar  * Carter, B. et al. Mapping


histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). _Nat. Commun._ 10, 3747 (2019). Article  Google Scholar  * Wang, Q. et al.


CoBATCH for high-throughput single-cell epigenomic profiling. _Mol. Cell_ 76, 206–216 (2019). Article  CAS  Google Scholar  * Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin


modifications in differentiation and tumor progression. _Nat. Biotechnol._ 39, 819–824 (2021). TOGETHER WITH BARTOSOVIC ET AL. (2021), THIS PAPER DESCRIBES DROPLET-BASED SCCUT&TAG.


Article  CAS  Google Scholar  * Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. _Nat.


Biotechnol._ 39, 825–835 (2021). TOGETHER WITH WU ET AL. (2021), THIS PAPER DESCRIBES DROPLET-BASED SCCUT&TAG. Article  CAS  Google Scholar  * Bartlett, D. A. et al. High-throughput


single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). _J. Cell Biol._ https://doi.org/10.1083/jcb.202103078 (2021). Article  Google Scholar  * Gibcus, J. H. et al. A


pathway for mitotic chromosome formation. _Science_ https://doi.org/10.1126/science.aao6135 (2018). Article  Google Scholar  * Zhang, H. et al. Chromatin structure dynamics during the


mitosis-to-G1 phase transition. _Nature_ 576, 158–162 (2019). Article  CAS  Google Scholar  * Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes.


_Nat. Rev. Mol. Cell Biol._ 22, 445–464 (2021). Article  CAS  Google Scholar  * Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. _Nature_ 502,


59–64 (2013). THIS PAPER DESCRIBES THE FIRST SCHI-C PROTOCOL. Article  CAS  Google Scholar  * Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C.


_Nature_ 544, 59–64 (2017). Article  CAS  Google Scholar  * Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. _Nature_ 544,


110–114 (2017). Article  CAS  Google Scholar  * Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. _Science_ 361,


924–928 (2018). Article  CAS  Google Scholar  * Tan, L. et al. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal


brain development. _Cell_ 184, 741–758 (2021). Article  CAS  Google Scholar  * Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. _Nature_ 547,


61–67 (2017). Article  CAS  Google Scholar  * Ramani, V. et al. Massively multiplex single-cell Hi-C. _Nat. Methods_ 14, 263–266 (2017). Article  CAS  Google Scholar  * Ramani, V. et al.


Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large number of single cells. _Methods_ 170, 61–68 (2020). Article  CAS  Google Scholar  * Arrastia, M. V. et al.


Single-cell measurement of higher-order 3D genome organization with scSPRITE. _Nat. Biotechnol._ 40, 64–73 (2022). Article  CAS  Google Scholar  * Zhu, C., Preissl, S. & Ren, B.


Single-cell multimodal omics: the power of many. _Nat. Methods_ 17, 11–14 (2020). Article  CAS  Google Scholar  * Elmentaite, R., Dominguez Conde, C., Yang, L. & Teichmann, S. A.


Single-cell atlases: shared and tissue-specific cell types across human organs. _Nat. Rev. Genet._ https://doi.org/10.1038/s41576-022-00449-w (2022). Article  Google Scholar  * Hu, Y. et al.


Simultaneous profiling of transcriptome and DNA methylome from a single cell. _Genome Biol._ 17, 88 (2016). Article  Google Scholar  * Hou, Y. et al. Single-cell triple omics sequencing


reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. _Cell Res._ 26, 304–319 (2016). Article  CAS  Google Scholar  * Bian, S. et al. Single-cell


multiomics sequencing and analyses of human colorectal cancer. _Science_ 362, 1060–1063 (2018). Article  CAS  Google Scholar  * Cao, J. et al. Joint profiling of chromatin accessibility and


gene expression in thousands of single cells. _Science_ 361, 1380–1385 (2018). THIS PAPER DESCRIBES THE FIRST SINGLE-CELL CO-ASSAY FOR ATAC-SEQ AND RNA EXPRESSION. Article  CAS  Google


Scholar  * Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. _Nat. Biotechnol._ 37, 1452–1457 (2019).


Article  CAS  Google Scholar  * Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. _Nat. Struct. Mol. Biol._ 26, 1063–1070


(2019). Article  CAS  Google Scholar  * Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. _Cell_ 183, 1103–1116 (2020). Article  CAS  Google


Scholar  * Xing, Q. R. et al. Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. _Genome Res._ 30, 1027–1039 (2020). Article  CAS  Google Scholar  * Liu,


L. et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. _Nat. Commun._ 10, 470 (2019). Article  CAS  Google Scholar  * Plongthongkum, N., Diep, D., Chen,


S., Lake, B. B. & Zhang, K. Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2). _Nat. Protoc._ 16, 4992–5029 (2021).


Article  CAS  Google Scholar  * Xiong, H., Luo, Y., Wang, Q., Yu, X. & He, A. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic


reconstructions. _Nat. Methods_ 18, 652–660 (2021). TOGETHER WITH ZHU ET AL. (2021), THIS PAPER INTRODUCES JOINT PROFILING OF HISTONE MODIFICATIONS AND RNA FROM THE SAME CELL USING


COMBINATORIAL INDEXING. Article  CAS  Google Scholar  * Zhu, C. et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. _Nat. Methods_ 18, 283–292


(2021). TOGETHER WITH XIONG ET AL. (2021), THIS PAPER INTRODUCES JOINT PROFILING OF HISTONE MODIFICATIONS AND RNA FROM THE SAME CELL USING COMBINATORIAL INDEXING. Article  CAS  Google


Scholar  * Sun, Z. et al. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. _Nat. Commun._ 12, 5941 (2021). Article  CAS  Google Scholar  * Stoeckius, M.


et al. Simultaneous epitope and transcriptome measurement in single cells. _Nat. Methods_ 14, 865–868 (2017). Article  CAS  Google Scholar  * Mimitou, E. P. et al. Scalable, multimodal


profiling of chromatin accessibility, gene expression and protein levels in single cells. _Nat. Biotechnol._ https://doi.org/10.1038/s41587-021-00927-2 (2021). Article  Google Scholar  *


Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. _Elife_ https://doi.org/10.7554/eLife.63632 (2021).


Article  Google Scholar  * Chen, X. et al. Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. _Nat. Commun._ 9,


4590 (2018). Article  Google Scholar  * Fiskin, E. et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. _Nat. Biotechnol._


https://doi.org/10.1038/s41587-021-01065-5 (2021). Article  Google Scholar  * Zhang, B. et al. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. _Nat.


Biotechnol._ https://doi.org/10.1038/s41587-022-01250-0 (2022). Article  Google Scholar  * Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin


accessibility and gene expression in single cells. _Nat. Methods_ https://doi.org/10.1038/s41592-022-01461-y (2022). THIS PAPER DESCRIBES COMBINED PROFILING OF NUCLEAR TRANSCRIPTION FACTOR


PROTEIN LEVELS, CHROMATIN ACCESSIBILITY AND TRANSCRIPTOMES. Article  Google Scholar  * Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.


_Cell Res._ 27, 967–988 (2017). Article  CAS  Google Scholar  * Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. _Elife_


https://doi.org/10.7554/eLife.23203 (2017). Article  Google Scholar  * Gu, C., Liu, S., Wu, Q., Zhang, L. & Guo, F. Integrative single-cell analysis of transcriptome, DNA methylome and


chromatin accessibility in mouse oocytes. _Cell Res._ 29, 110–123 (2019). Article  CAS  Google Scholar  * Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA


methylation and transcription in single cells. _Nat. Commun._ 9, 781 (2018). Article  Google Scholar  * Wang, Y. et al. Single-cell multiomics sequencing reveals the functional regulatory


landscape of early embryos. _Nat. Commun._ 12, 1247 (2021). Article  CAS  Google Scholar  * Tedesco, M. et al. Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of


heterochromatin and euchromatin. _Nat. Biotechnol._ 40, 235–244 (2022). Article  CAS  Google Scholar  * Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous


profiling of multiple chromatin proteins in the same cells. _Mol. Cell_ 81, 4736–4746.e5 (2021). Article  CAS  Google Scholar  * Li, G. et al. Joint profiling of DNA methylation and


chromatin architecture in single cells. _Nat. Methods_ 16, 991–993 (2019). TOGETHER WITH LEE ET AL. (2019), THIS PAPER DESCRIBES THE FIRST METHODS FOR SINGLE-CELL JOINT PROFILING OF


CHROMATIN ARCHITECTURE AND DNA METHYLATION. Article  CAS  Google Scholar  * Lee, D. S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. _Nat.


Methods_ 16, 999–1006 (2019). TOGETHER WITH LI ET AL. (2019), THIS PAPER DESCRIBES THE FIRST METHODS FOR SINGLE-CELL JOINT PROFILING OF CHROMATIN ARCHITECTURE AND DNA METHYLATION. Article 


CAS  Google Scholar  * Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. _Nat. Methods_ 18, 1333–1341 (2021). Article 


CAS  Google Scholar  * Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. _Nat. Genet._ 53, 403–411 (2021). Article  CAS


  Google Scholar  * Fang, R. et al. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. _Nat. Commun._ 12, 1337 (2021). Article  CAS  Google Scholar  * Bravo Gonzalez-Blas, C.


et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. _Nat. Methods_ 16, 397–400 (2019). THE PAPERS BY STUART ET AL.135, GRANJA ET AL.136, FANG ET AL.137 AND BRAVO


GONZALEZ-BLAS ET AL.138 DESCRIBE SOFTWARE PACKAGES FOR SCATAC-SEQ ANALYSIS. Article  CAS  Google Scholar  * Xiong, L. et al. SCALE method for single-cell ATAC-seq analysis via latent feature


extraction. _Nat. Commun._ 10, 4576 (2019). Article  Google Scholar  * Forgy, E. W. Cluster analysis of multivariate data: efficiency versus interpretability of classifications.


_Biometrics_ 21, 768–769 (1965). Google Scholar  * Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. in _Proceedings of the Second International Conference on Knowledge Discovery and Data


Mining (KDD-96)_ 226–231 (AAAI Press, 1996). * Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. _J. Stat. Mech. Theory


Exp._ 2008, P10008 (2008). Article  Google Scholar  * Traag, V. A. Faster unfolding of communities: speeding up the Louvain algorithm. _Phys. Rev. E Stat. Nonlin. Soft Matter Phys._ 92,


032801 (2015). Article  CAS  Google Scholar  * van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. _J. Mach. Learn. Res._ 9, 2579–2605 (2008). Google Scholar  * McInnes, L.,


John, H. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at _arXiv_ https://doi.org/10.48550/arXiv.1802.03426 (2018). Article  Google


Scholar  * Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. _Cell Syst._ 8, 281–291 (2019). Article 


CAS  Google Scholar  * Thibodeau, A. et al. AMULET: a novel read count-based method for effective multiplet detection from single nucleus ATAC-seq data. _Genome Biol._ 22, 252 (2021).


Article  CAS  Google Scholar  * Pierce, S. E., Granja, J. M. & Greenleaf, W. J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of


regulatory networks in cancer. _Nat. Commun._ 12, 2969 (2021). Article  CAS  Google Scholar  * Danese, A. et al. EpiScanpy: integrated single-cell epigenomic analysis. _Nat. Commun._ 12,


5228 (2021). THIS PAPER DESCRIBES A SOFTWARE PACKAGE FOR SINGLE-CELL EPIGENOMIC ANALYSIS. Article  CAS  Google Scholar  * Zhang, H. et al. Fast alignment and preprocessing of chromatin


profiles with Chromap. _Nat. Commun._ 12, 6566 (2021). Article  CAS  Google Scholar  * de Boer, C. G. & Regev, A. BROCKMAN: deciphering variance in epigenomic regulators by k-mer


factorization. _BMC Bioinformatics_ 19, 253 (2018). Article  Google Scholar  * Zamanighomi, M. et al. Unsupervised clustering and epigenetic classification of single cells. _Nat. Commun._ 9,


2410 (2018). Article  Google Scholar  * Baker, S. M., Rogerson, C., Hayes, A., Sharrocks, A. D. & Rattray, M. Classifying cells with Scasat, a single-cell ATAC-seq analysis tool.


_Nucleic Acids Res._ 47, e10 (2019). Article  Google Scholar  * Ji, Z., Zhou, W. & Ji, H. Single-cell regulome data analysis by SCRAT. _Bioinformatics_ 33, 2930–2932 (2017). Article  CAS


  Google Scholar  * Fowlkes, C., Belongie, S., Chung, F. & Malik, J. Spectral grouping using the Nystrom method. _IEEE Trans. Pattern Anal. Mach. Intell._ 26, 214–225 (2004). Article 


Google Scholar  * Stuart, T. et al. Comprehensive integration of single-cell data. _Cell_ 177, 1888–1902 (2019). Article  CAS  Google Scholar  * Korsunsky, I. et al. Fast, sensitive and


accurate integration of single-cell data with Harmony. _Nat. Methods_ 16, 1289–1296 (2019). Article  CAS  Google Scholar  * Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C.


Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. _Nat. Biotechnol._ 36, 421–427 (2018). Article  CAS  Google Scholar  * Kang, J. B. et al.


Efficient and precise single-cell reference atlas mapping with Symphony. _Nat. Commun._ 12, 5890 (2021). Article  CAS  Google Scholar  * Argelaguet, R., Cuomo, A. S. E., Stegle, O. &


Marioni, J. C. Computational principles and challenges in single-cell data integration. _Nat. Biotechnol._ 39, 1202–1215 (2021). Article  CAS  Google Scholar  * Hao, Y. et al. Integrated


analysis of multimodal single-cell data. _Cell_ 184, 3573–3587 (2021). Article  CAS  Google Scholar  * Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive integration of


multi-modal single-cell data. _Genome Biol._ 21, 111 (2020). Article  Google Scholar  * Jin, S., Zhang, L. & Nie, Q. scAI: an unsupervised approach for the integrative analysis of


parallel single-cell transcriptomic and epigenomic profiles. _Genome Biol._ 21, 25 (2020). Article  Google Scholar  * Kim, H. J., Lin, Y., Geddes, T. A., Yang, J. Y. H. & Yang, P.


CiteFuse enables multi-modal analysis of CITE-seq data. _Bioinformatics_ 36, 4137–4143 (2020). Article  CAS  Google Scholar  * Gayoso, A. et al. Joint probabilistic modeling of single-cell


multi-omic data with totalVI. _Nat. Methods_ 18, 272–282 (2021). Article  CAS  Google Scholar  * Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of


brain cell identity. _Cell_ 177, 1873–1887 (2019). Article  CAS  Google Scholar  * Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. _Nat. Methods_


16, 695–698 (2019). Article  CAS  Google Scholar  * Jansen, C. et al. Building gene regulatory networks from scATAC-seq and scRNA-seq using linked self organizing maps. _PLoS Comput. Biol._


15, e1006555 (2019). Article  Google Scholar  * Welch, J. D., Hartemink, A. J. & Prins, J. F. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and


epigenome dynamics. _Genome Biol._ 18, 138 (2017). Article  Google Scholar  * Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). _Genome Biol._ 9, R137 (2008). Article  Google Scholar


  * Haeussler, M. et al. The UCSC genome browser database: 2019 update. _Nucleic Acids Res._ 47, D853–D858 (2019). Article  CAS  Google Scholar  * Robinson, J. T. et al. Integrative genomics


viewer. _Nat. Biotechnol._ 29, 24–26 (2011). Article  CAS  Google Scholar  * Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU epigenome browser update 2019. _Nucleic


Acids Res._ 47, W158–W165 (2019). Article  CAS  Google Scholar  * Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated


accessibility from single-cell epigenomic data. _Nat. Methods_ 14, 975–978 (2017). Article  CAS  Google Scholar  * Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from


single-cell chromatin accessibility data. _Mol. Cell_ 71, 858–871.e8 (2018). Article  CAS  Google Scholar  * Yu, M. et al. SnapHiC: a computational pipeline to identify chromatin loops from


single-cell Hi-C data. _Nat. Methods_ https://doi.org/10.1038/s41592-021-01231-2 (2021). Article  Google Scholar  * Qiu, X. et al. Reversed graph embedding resolves complex single-cell


trajectories. _Nat. Methods_ 14, 979–982 (2017). Article  CAS  Google Scholar  * Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. _Nature_ 566, 496–502


(2019). Article  CAS  Google Scholar  * Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. _BMC Genomics_ 19, 477 (2018). Article  Google


Scholar  * Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. _Bioinformatics_ 32, 1241–1243 (2016). Article  CAS  Google Scholar  * Corces, M. R. et al.


Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. _Nat. Genet._ 52, 1158–1168 (2020). Article  CAS  Google


Scholar  * Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. _Nature_ 598, 111–119 (2021). Article  CAS  Google Scholar  * Buenrostro, J. D. et


al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. _Cell_ 173, 1535–1548.e16 (2018). Article  CAS  Google Scholar  * Muto,


Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. _Nat. Commun._ 12, 2190 (2021). Article  CAS  Google


Scholar  * Duong, T. E. et al. A single-cell regulatory map of postnatal lung alveologenesis in humans and mice. _Cell Genom._ https://doi.org/10.1016/j.xgen.2022.100108 (2022). Article 


Google Scholar  * Zhang, Z. et al. Single nucleus transcriptome and chromatin accessibility of postmortem human pituitaries reveal diverse stem cell regulatory mechanisms. _Cell Rep._ 38,


110467 (2022). Article  CAS  Google Scholar  * Rai, V. et al. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes


regulatory signatures. _Mol. Metab._ 32, 109–121 (2020). Article  CAS  Google Scholar  * Wang, A. et al. Single-cell multiomic profiling of human lungs reveals cell-type-specific and


age-dynamic control of SARS-CoV2 host genes. _Elife_ https://doi.org/10.7554/eLife.62522 (2020). Article  Google Scholar  * Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of


human cortical development. _Nature_ 598, 205–213 (2021). Article  CAS  Google Scholar  * Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral


cortex at single-cell resolution. _Cell_ 184, 5053–5069.e23 (2021). Article  CAS  Google Scholar  * Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic


characterization of Alzheimer’s disease. _Nat. Genet._ 53, 1143–1155 (2021). Article  CAS  Google Scholar  * Fasolino, M. et al. Single-cell multi-omics analysis of human pancreatic islets


reveals novel cellular states in type 1 diabetes. _Nat. Metab._ 4, 284–299 (2022). Article  CAS  Google Scholar  * Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory


programs in mixed-phenotype acute leukemia. _Nat. Biotechnol._ 37, 1458–1465 (2019). Article  CAS  Google Scholar  * Hocker, J. D. et al. Cardiac cell type-specific gene regulatory programs


and disease risk association. _Sci. Adv._ https://doi.org/10.1126/sciadv.abf1444 (2021). Article  Google Scholar  * Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and


single-cell epigenomics. _Nature_ 594, 398–402 (2021). Article  CAS  Google Scholar  * Ord, T. et al. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. _Circ.


Res._ 129, 240–258 (2021). Article  Google Scholar  * Sheng, X. et al. Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and


potential treatments. _Nat. Genet._ 53, 1322–1333 (2021). Article  CAS  Google Scholar  * Chiou, J. et al. Single-cell chromatin accessibility identifies pancreatic islet cell type- and


state-specific regulatory programs of diabetes risk. _Nat. Genet._ 53, 455–466 (2021). Article  CAS  Google Scholar  * Orchard, P. et al. Human and rat skeletal muscle single-nuclei


multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. _Genome Res._ https://doi.org/10.1101/gr.268482.120 (2021). Article  Google


Scholar  * Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. _Science_ 375, 681–686 (2022). Article  CAS  Google Scholar  *


Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. _Genome Biol._ 19, 15 (2018). Article  Google Scholar  Download references


ACKNOWLEDGEMENTS We apologize to those authors whose work we fail to include in this Review due to space constraints. Research in the Ren lab is funded by the Ludwig Institute and the


National Institutes of Health (NIH) grants 1UM1HG009402, 1U19MH114831, 1U01MH121282, 1R01AG066018, R01AG067153, U01DA052769, 1UM1HG011585, RF1MH124612, 1R56AG069107, R01EY031663,


1U01HG012059, R24AG073198 and RF1MH128838. The Center for Epigenomics was supported, in part, by the UC San Diego School of Medicine and by NIH grants R01EY030591, U01HL148867, U01DK120429


and R01HD102534. The Gaulton lab is funded by NIH grants DK114650, DK120429, DK122607, DK105554 and HG012059. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Center for Epigenomics, University


of California San Diego, La Jolla, CA, USA Sebastian Preissl & Bing Ren * Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of


Freiburg, Freiburg, Germany Sebastian Preissl * Department of Paediatrics, Paediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA Kyle J. Gaulton *


Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA Bing Ren * Ludwig Institute for Cancer Research, La Jolla, CA, USA


Bing Ren Authors * Sebastian Preissl View author publications You can also search for this author inPubMed Google Scholar * Kyle J. Gaulton View author publications You can also search for


this author inPubMed Google Scholar * Bing Ren View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The authors contributed equally to all


aspects of the article. CORRESPONDING AUTHORS Correspondence to Sebastian Preissl, Kyle J. Gaulton or Bing Ren. ETHICS DECLARATIONS COMPETING INTERESTS B.R. is a shareholder and consultant


of Arima Genomics, Inc., and a co-founder of Epigenome Technologies, Inc. K.J.G. is a consultant of Genentech and a shareholder in Vertex Pharmaceuticals and Neurocrine Biosciences. These


relationships have been disclosed to and approved by the UCSD Independent Review Committee. S.P. declares no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews


Genetics_ thanks T. Stuart, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains


neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS CHROMIUM SINGLE CELL MULTIOME ATAC+GENE EXPRESSION:


https://www.10xgenomics.com/products/single-cell-multiome-atac-plus-gene-expression SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION GLOSSARY * _Cis-_regulatory elements (CREs).


Non-coding DNA sequences that regulate transcription of genes located on the same chromosome. They include enhancers, promoters, insulators, silencing elements and tethering elements.


Different classes of CREs can be identified using a combination of molecular markers, including chromatin accessibility and epigenetic modifications. * Promoters CREs located at the


transcriptional start site of a gene. * Enhancers CREs that can activate target gene expression from a large genomic distance, ranging from several kilobases to even millions of base pairs.


They can be found either upstream or downstream of the target gene promoter. * Insulators CREs that prevent an enhancer from activating a target gene when placed between the enhancer and


gene promoter but not when placed outside. An insulator also refers to a boundary element that can prevent the spreading of heterochromatin into euchromatic regions. * Silencer elements CREs


that can be located close or distal to the transcriptional start site of the target gene. Silencers are bound by repressive transcription factors to inactivate gene expression. * Tethering


elements CREs that can bring together promoters and enhancers for gene activation. * Chromatin A complex of DNA and histone proteins. The basic unit of chromatin is the nucleosome. * Histone


modifications Covalent modifications to histone proteins, such as methylation, acetylation, phosphorylation, ubiquitylation and sumoylation, that take place at lysine, serine, threonine,


arginine and other residues. Histone modifications are catalysed by a diverse panel of enzymes referred to as writers, removed by a different set of proteins known as erasers, and recognized


by chromatin-binding proteins known as readers. Activity of CREs is directly linked to distinct histone modifications due to the activities of writers, erasers and readers. * Epigenome The


combined features that enable stable propagation of different gene expression patterns from the same genome sequence. These include methylation of DNA at cytosine bases (mC), chemical


modification of the histone proteins, chromatin accessibility and higher-order chromatin structures. * Tagmentation The process by which double-stranded DNA is cleaved by the transposase


Tn5, creating short DNA fragments that are simultaneously tagged with PCR adapters. Tagmentation using Tn5 preferentially occurs at accessible or open chromatin and this property is used in


ATAC-seq and other related assays. * 3D-chromatin organization Folding of the chromatin fibres inside the nucleus governs the spatial proximity between genes and CREs. While complex and


variable between cells, the chromatin organization exhibits certain common features, including A/B compartments, topologically associating domains and loops. RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Preissl, S., Gaulton, K.J. & Ren, B. Characterizing _cis_-regulatory elements using single-cell epigenomics. _Nat Rev Genet_ 24,


21–43 (2023). https://doi.org/10.1038/s41576-022-00509-1 Download citation * Accepted: 24 May 2022 * Published: 15 July 2022 * Issue Date: January 2023 * DOI:


https://doi.org/10.1038/s41576-022-00509-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative