Crispr–cas in mobile genetic elements: counter-defence and beyond

Crispr–cas in mobile genetic elements: counter-defence and beyond

Play all audios:

Loading...

ABSTRACT The principal function of CRISPR–Cas systems in archaea and bacteria is defence against mobile genetic elements (MGEs), including viruses, plasmids and transposons. However, the


relationships between CRISPR–Cas and MGEs are far more complex. Several classes of MGE contributed to the origin and evolution of CRISPR–Cas, and, conversely, CRISPR–Cas systems and their


components were recruited by various MGEs for functions that remain largely uncharacterized. In this Analysis article, we investigate and substantially expand the range of CRISPR–Cas


components carried by MGEs. Three groups of Tn7-like transposable elements encode ‘minimal’ type I CRISPR–Cas derivatives capable of target recognition but not cleavage, and another group


encodes an inactivated type V variant. These partially inactivated CRISPR–Cas variants might mediate guide RNA-dependent integration of the respective transposons. Numerous plasmids and some


prophages encode type IV systems, with similar predicted properties, that appear to contribute to competition among plasmids and between plasmids and viruses. Many prokaryotic viruses also


carry CRISPR mini-arrays, some of which recognize other viruses and are implicated in inter-virus conflicts, and solitary repeat units, which could inhibit host CRISPR–Cas systems. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other


Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online


access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


ALTERNATIVE FUNCTIONS OF CRISPR–CAS SYSTEMS IN THE EVOLUTIONARY ARMS RACE Article 06 January 2022 TRANSPOSON-ENCODED NUCLEASES USE GUIDE RNAS TO PROMOTE THEIR SELFISH SPREAD Article 27


September 2023 MECHANISTIC AND EVOLUTIONARY INSIGHTS INTO A TYPE V-M CRISPR–CAS EFFECTOR ENZYME Article Open access 17 July 2023 REFERENCES * Makarova, K. S. et al. An updated evolutionary


classification of CRISPR-Cas systems. _Nat. Rev. Microbiol._ 13, 722–736 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mohanraju, P. et al. Diverse evolutionary roots and


mechanistic variations of the CRISPR-Cas systems. _Science_ 353, aad5147 (2016). Article  PubMed  Google Scholar  * Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions


and applications. _Nat. Microbiol._ 2, 17092 (2017). Article  CAS  PubMed  Google Scholar  * Jackson, S. A. et al. CRISPR-Cas: adapting to change. _Science_ 356, eaal5056 (2017). Article 


PubMed  Google Scholar  * Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. _Curr. Opin. Microbiol._ 37, 67–78 (2017). THIS


ARTICLE IS THE LATEST PUBLISHED OVERVIEW OF THE CRISPR–CAS DIVERSITY, WITH AN EMPHASIS ON CLASS 2 SYSTEMS DISCOVERED THROUGH DEDICATED SEARCH EFFORTS. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Garcia-Martinez, J., Maldonado, R. D., Guzman, N. M. & Mojica, F. J. M. The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. _Microb. Cell_ 5,


262–268 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Classification and nomenclature of CRISPR-Cas systems: where from


here? _CRISPR J_. https://doi.org/10.1089/crispr.2018.0033 (2018). Article  PubMed  Google Scholar  * Faure, G., Makarova, K. S. & Koonin, E. V. CRISPR-Cas: complex functional networks


and multiple roles beyond adaptive immunity. _J. Mol. Biol._ 431, 3–20 (2018). Article  PubMed  Google Scholar  * Westra, E. R., Buckling, A. & Fineran, P. C. CRISPR-Cas systems: beyond


adaptive immunity. _Nat. Rev. Microbiol._ 12, 317–326 (2014). Article  CAS  PubMed  Google Scholar  * Shmakov, S. A., Makarova, K. S., Wolf, Y. I., Severinov, K. V. & Koonin, E. V.


Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. _Proc. Natl Acad. Sci. USA_ 115, E5307–E5316 (2018). THIS ARTICLE PRESENTS SYSTEMATIC


PREDICTION AND ANALYSIS OF GENES ASSOCIATED WITH VARIOUS SUBSETS OF CRISPR–CAS SYSTEMS. THE RESULTS SUGGEST SUBSTANTIAL FUNCTIONAL DIVERSIFICATION OF CRISPR–CAS, IN PARTICULAR, COUPLING WITH


SIGNAL TRANSDUCTION, ESPECIALLY IN TYPE III SYSTEMS. Article  CAS  PubMed  Google Scholar  * Shah, S. A. et al. Comprehensive search for accessory proteins encoded with archaeal and


bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. _RNA Biol_. https://doi.org/10.1080/15476286.2018.1483685 (2018). THIS PAPER COMPLEMENTS SHMAKOV ET AL. (2018)


BY PROVIDING SYSTEMATIC ANALYSIS OF PREDICTED ACCESSORY PROTEINS ASSOCIATED WITH TYPE III CRISPR–CAS SYSTEMS. Article  PubMed  PubMed Central  Google Scholar  * Koonin, E. V. & Makarova,


K. S. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. _Genome Biol. Evol_ 9, 2812–2825 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Krupovic, M., Beguin, P. & Koonin, E. V. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. _Curr. Opin. Microbiol._ 38, 36–43 (2017). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA


transposons at the origin of prokaryotic CRISPR-Cas immunity. _BMC Biol._ 12, 36 (2014). Article  PubMed  PubMed Central  Google Scholar  * Kazazian, H. H. Jr. Mobile elements: drivers of


genome evolution. _Science_ 303, 1626–1632 (2004). Article  CAS  PubMed  Google Scholar  * Gueguen, E., Rousseau, P., Duval-Valentin, G. & Chandler, M. The transpososome: control of


transposition at the level of catalysis. _Trends Microbiol._ 13, 543–549 (2005). Article  CAS  PubMed  Google Scholar  * Peters, J. E. & Craig, N. L. Tn7: smarter than we thought. _Nat.


Rev. Mol. Cell Biol._ 2, 806–814 (2001). Article  CAS  PubMed  Google Scholar  * Fricker, A. D. & Peters, J. E. Vulnerabilities on the lagging-strand template: opportunities for mobile 


elements. _Annu. Rev. Genet._ 48, 167–186 (2014). Article  CAS  PubMed  Google Scholar  * Nunez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition


during CRISPR-Cas adaptive immunity. _Nature_ 519, 193–198 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hudaiberdiev, S. et al. Phylogenomics of Cas4 family nucleases.


_BMC Evol. Biol._ 17, 232 (2017). Article  PubMed  PubMed Central  Google Scholar  * Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. _Mol.


Cell_ 60, 385–397 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. _Nat. Rev. Microbiol._ 15,


169–182 (2017). THIS ARTICLE PRESENTS A DEFINITIVE DESCRIPTION OF THE DEDICATED EFFORTS ON THE DISCOVERY OF DIVERSE CLASS 2 CRISPR–CAS SYSTEMS. THE KEY FINDING IS THE IDENTIFICATION OF


MULTIPLE VARIANTS ASSIGNED TO SUBTYPE V-U THAT APPEAR TO HAVE INDEPENDENTLY EVOLVED FROM DIFFERENT GROUPS OF TNPB NUCLEASES AND ARE LIKELY TO BE EVOLUTIONARY INTERMEDIATES ON THE PATH FROM


TNPB TO BONA FIDE CLASS 2 CRISPR EFFECTORS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas


systems by Tn7-like transposons. _Proc. Natl Acad. Sci. USA_ 114, E7358–E7366 (2017). THIS ARTICLE IS THE FIRST DESCRIPTION OF DERIVED CRISPR–CAS SYSTEMS CARRIED BY TN7-LIKE TRANSPOSONS. A


HYPOTHETICAL MECHANISM FOR CRRNA-GUIDED TRANSPOSITION IS PROPOSED. Article  CAS  PubMed  Google Scholar  * McDonald, N. D., Regmi, A., Morreale, D. P., Borowski, J. D. & Fidelma Boyd, E.


CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. _BMC Genomics_ 20, 105 (2019). Article  PubMed  PubMed Central  Google Scholar  * Ozcan, A. et al.


Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. _Nat. Microbiol._ 4, 89–96 (2019). THIS ARTICLE PRESENTS THE MOST THOROUGH AVAILABLE CHARACTERIZATION


OF THE STRUCTURE AND BIOCHEMICAL ACTIVITIES OF TYPE IV CRISPR–CAS SYSTEMS. THE SIMILARITY OF THE EFFECTOR COMPLEX STRUCTURE TO THOSE OF TYPE I IS DEMONSTRATED, SUGGESTING THAT TYPE IV IS AN


EXTREMELY DERIVED FORM OF TYPE I. Article  PubMed  Google Scholar  * Maier, L. K., Dyall-Smith, M. & Marchfelder, A. The adaptive immune system of Haloferax volcanii. _Life (Basel)_ 5,


521–537 (2015). Google Scholar  * Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate


immunity. _Nature_ 494, 489–491 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Naser, I. B. et al. Analysis of the CRISPR-Cas system in bacteriophages active on epidemic


strains of _Vibrio cholerae_ in Bangladesh. _Sci. Rep._ 7, 14880 (2017). Article  PubMed  PubMed Central  Google Scholar  * Roberts, A. P. & Mullany, P. Tn916-like genetic elements: a


diverse group of modular mobile elements conferring antibiotic resistance. _FEMS Microbiol. Rev._ 35, 856–871 (2011). Article  CAS  PubMed  Google Scholar  * Parks, A. R. et al.


Transposition into replicating DNA occurs through interaction with the processivity factor. _Cell_ 138, 685–695 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Harrington, L.


B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. _Science_ 362, 839–842 (2018). THIS ARTICLE IS AN EXPERIMENTAL VALIDATION OF THE INTERFERENCE ACTIVITY OF THREE SMALL


TYPE V EFFECTOR PROTEINS THAT ARE CLOSELY RELATED TO TNPB AND SOME OF THE SUBTYPE V-U VARIANTS DESCRIBED IN SHMAKOV ET AL. ( _NAT. REV. MICROBIOL._ , 2017). PREFERENTIAL ACTIVITY AGAINST


SINGLE-STRANDED DNA, AS OPPOSED TO DOUBLE-STRANDED DNA, AS IS THE CASE FOR CAS12, IS DEMONSTRATED. THE CORRESPONDING CRISPR–CAS TYPE SYSTEMS ARE NOW CLASSIFIED AS SUBTYPE V-F. Article  CAS 


PubMed  Google Scholar  * Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. _Science_ 363, 88–91 (2019). THIS WORK COMPLEMENTS HARRINGTON ET AL. (2018) BY DEMONSTRATING THE


ACTIVITY OF A DISTINCT V-U VARIANT (RECLASSIFIED SUBTYPE V-G) THAT UNEXPECTEDLY SHOWS STRONG PREFERENCE FOR SINGLE-STRANDED RNA SUBSTRATES. Article  CAS  PubMed  Google Scholar  * He, S. et


al. The IS200/IS605 family and “peel and paste” single-strand transposition mechanism. _Microbiol. Spectr_. https://doi.org/10.1128/microbiolspec.MDNA3-0039-2014 (2015). Article  PubMed 


Google Scholar  * Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. _Science_ 360, 436–439 (2018). Article  CAS  PubMed  Google Scholar


  * Choi, K. Y., Spencer, J. M. & Craig, N. L. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. _Proc. Natl Acad. Sci. USA_ 111,


E2858–E2865 (2014). Article  CAS  PubMed  Google Scholar  * Peters, J. E. Tn7. _Microbiol. Spectr_. https://doi.org/10.1128/microbiolspec.MDNA3-0010-2014 (2014). Article  PubMed  Google


Scholar  * Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. _Nat. Rev. Genet._ 16, 184–192 (2015). Article  CAS


  PubMed  Google Scholar  * Nowacki, M., Shetty, K. & Landweber, L. F. RNA-mediated epigenetic programming of genome rearrangements. _Annu. Rev. Genomics Hum. Genet._ 12, 367–389 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Newire, E., Aydin, A., Juma, S., Enne, V. & Roberts, A. P. Identification of a type IV CRISPR-Cas system located exclusively on


IncHI1B/ IncFIB plasmids in Enterobacteriaceae. Preprint at _bioRxiv_ https://doi.org/10.1101/536375 (2019) Article  Google Scholar  * Carroll, K. S. et al. A conserved mechanism for


sulfonucleotide reduction. _PLOS Biol._ 3, e250 (2005). Article  PubMed  PubMed Central  Google Scholar  * You, D., Wang, L., Yao, F., Zhou, X. & Deng, Z. A novel DNA modification by


sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in _Streptomyces lividans_. _Biochemistry_ 46, 6126–6133 (2007). Article  CAS 


PubMed  Google Scholar  * Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. _Nucleic Acids Res._ 41, 4360–4377 (2013). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Simon, N. C., Aktories, K. & Barbieri, J. T. Novel bacterial ADP-ribosylating toxins: structure and function. _Nat. Rev. Microbiol._ 12,


599–611 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. _Nat. Rev. Microbiol._ 8, 317–327


(2010). Article  CAS  PubMed  Google Scholar  * Shabbir, M. A. et al. Bacteria versus bacteriophages: parallel evolution of immune arsenals. _Front. Microbiol._ 7, 1292 (2016). Article 


PubMed  PubMed Central  Google Scholar  * Villion, M. & Moineau, S. The double-edged sword of CRISPR-Cas systems. _Cell Res._ 23, 15–17 (2013). Article  CAS  PubMed  Google Scholar  *


Angermeyer, A., Das, M. M., Singh, D. V. & Seed, K. D. Analysis of 19 highly conserved _Vibrio cholerae_ bacteriophages isolated from environmental and patient sources over a twelve-year


period. _Viruses_ 10, E299 (2018). Article  PubMed  Google Scholar  * Al-Shayeb, B. et al. Clades of huge phage from across Earth’s ecosystems. Preprint at _bioRxiv_


https://doi.org/10.1101/572362 (2019). Article  Google Scholar  * Hooton, S. P., Brathwaite, K. J. & Connerton, I. F. The bacteriophage carrier state of _Campylobacter jejuni_ features


changes in host non-coding RNAs and the acquisition of new host-derived CRISPR spacer sequences. _Front. Microbiol._ 7, 355 (2016). Article  PubMed  PubMed Central  Google Scholar  * Hooton,


S. P. & Connerton, I. F. _Campylobacter jejuni_ acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. _Front. Microbiol._


5, 744 (2014). PubMed  Google Scholar  * He, F. et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. _Nat. Microbiol._ 3, 461–469 (2018). Article  CAS


  PubMed  Google Scholar  * Koonin, E. V. & Makarova, K. S. Anti-CRISPRs on the march. _Science_ 362, 156–157 (2018). Article  CAS  PubMed  Google Scholar  * Sebaihia, M. et al. The


multidrug-resistant human pathogen _Clostridium difficile_ has a highly mobile, mosaic genome. _Nat. Genet._ 38, 779–786 (2006). Article  PubMed  Google Scholar  * Minot, S. et al. The human


gut virome: inter-individual variation and dynamic response to diet. _Genome Res._ 21, 1616–1625 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garcia-Heredia, I. et al.


Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. _PLOS ONE_ 7, e33802 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Faure, G.


et al. Comparative genomics and evolution of _trans_-activating RNAs in class 2 CRISPR-Cas systems. _RNA Biol_. https://doi.org/10.1080/15476286.2018.1493331 (2018). Article  PubMed  PubMed


Central  Google Scholar  * Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. _mBio_ 8, e01397-17 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Anderson, E. M. et al. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. _J. Biotechnol._ 211, 56–65 (2015). Article


  CAS  PubMed  Google Scholar  * Zheng, T. et al. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. _Sci. Rep._ 7, 40638 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. _Nature_ 523, 481–485 (2015). Article  PubMed  PubMed Central  Google


Scholar  * Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in _Streptococcus thermophilus_. _J. Bacteriol._ 190, 1401–1412 (2008). Article  CAS  PubMed  Google Scholar 


* Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. _Mol. Cell_ 62, 137–147 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in _Neisseria meningitidis_. _Mol. Cell_ 50, 488–503 (2013). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Amitai, G. & Sorek, R. CRISPR-Cas adaptation: insights into the mechanism of action. _Nat. Rev. Microbiol._ 14, 67–76 (2016). Article  CAS  PubMed  Google Scholar  * Pawluk,


A. et al. Naturally occurring off-switches for CRISPR-Cas9. _Cell_ 167, 1829–1838 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pawluk, A., Davidson, A. R. & Maxwell,


K. L. Anti-CRISPR: discovery, mechanism and function. _Nat. Rev. Microbiol._ 16, 12–17 (2018). Article  CAS  PubMed  Google Scholar  * Maxwell, K. L. The anti-CRISPR story: a battle for


survival. _Mol. Cell_ 68, 8–14 (2017). Article  CAS  PubMed  Google Scholar  * Varble, A., Meaden, S., Barrangou, R., Westra, E. R. & Marraffini, L. A. Recombination between phages and


CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. _Nat. Microbiol._ https://doi.org/10.1038/s41564-019-0400-2 (2019). Article  PubMed  Google Scholar  * Koonin, E. V.


& Krupovic, M. A movable defense. _TheScientist_ https://www.the-scientist.com/features/a-movable-defense-36135 (2015). * Arndt, D. et al. PHASTER: a better, faster version of the PHAST


phage search tool. _Nucleic Acids Res._ 44, W16–W21 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS G.F., S.A.S., K.S.M. and E.V.K. are


supported by funds from the Intramural Research Program of the National Institutes of Health of the USA. S.A.S. was additionally supported by the Russian Foundation for Basic Research


(research project 18-34-00012) and a systems biology fellowship from Philip Morris Sales and Marketing. J.E.P. was supported by the US Department of Agriculture National Institute of Food


and Agriculture Hatch Project NYC-189438. D.R.C., W.X.Y. and D.A.S. are supported by Arbor Biotechnologies. REVIEWER INFORMATION _Nature Reviews Microbiology_ thanks U. Gophna, and other


anonymous reviewer(s), for their contribution to the peer review of this work. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * National Center for Biotechnology Information, National Library


of Medicine, National Institutes of Health, Bethesda, MD, USA Guilhem Faure, Sergey A. Shmakov, Kira S. Makarova & Eugene V. Koonin * Broad Institute of MIT and Harvard, Cambridge, MA,


USA Guilhem Faure * Skolkovo Institute of Science and Technology, Skolkovo, Russia Sergey A. Shmakov * Arbor Biotechnologies, Cambridge, MA, USA Winston X. Yan, David R. Cheng & David A.


Scott * Department of Microbiology, Cornell University, Ithaca, NY, USA Joseph E. Peters Authors * Guilhem Faure View author publications You can also search for this author inPubMed Google


Scholar * Sergey A. Shmakov View author publications You can also search for this author inPubMed Google Scholar * Winston X. Yan View author publications You can also search for this


author inPubMed Google Scholar * David R. Cheng View author publications You can also search for this author inPubMed Google Scholar * David A. Scott View author publications You can also


search for this author inPubMed Google Scholar * Joseph E. Peters View author publications You can also search for this author inPubMed Google Scholar * Kira S. Makarova View author


publications You can also search for this author inPubMed Google Scholar * Eugene V. Koonin View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


G.F., S.A.S., W.X.Y., D.R.C., D.A.S., J.E.P., K.S.M. and E.V.K. researched the data for the article. G.F., W.X.Y., D.R.C., D.A.S., J.E.P., K.S.M. and E.V.K. substantially contributed to the


discussion of the content. E.V.K. wrote the article. G.F., W.X.Y., D.R.C., D.A.S., J.E.P., K.S.M. and E.V.K. reviewed and edited the manuscript before submission. CORRESPONDING AUTHOR


Correspondence to Eugene V. Koonin. ETHICS DECLARATIONS COMPETING INTERESTS D.R.C., W.X.Y. and D.A.S. are shareholders of Arbor Biotechnologies. All other authors declare no competing


interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY DATASET 1 SUPPLEMENTARY DATASET 2 SUPPLEMENTARY DATASET 3 SUPPLEMENTARY DATASET 4 SUPPLEMENTARY DATASET 5 GLOSSARY * CRISPR spacers Unique


sequences of 20–60 nucleotides inserted between the repeats in the CRISPR array and employed, as part of the CRISPR RNA, for targeting DNA molecules containing a homologous protospacer. *


CRISPR array A series of direct repeats in bacterial and archaeal genomes interspersed with spacers that are acquired primarily from mobile genetic element DNA. * crRNAs Short RNAs, produced


by processing of the primary transcript of a CRISPR array, that consists of a spacer and portions of the flanking repeats and functions as a guide to target DNA or RNA molecules containing


cognate protospacers. * Mini-arrays Minimal forms of a CRISPR array that consists of a proximal repeat, a spacer and a distal repeat, or, more commonly, a partial repeat; so far identified


in virus and provirus genomes. * Solitary repeat units (SRUs). Short sequences, so far identified in virus and provirus genomes, that are (nearly) identical to a repeat from a CRISPR array.


* CRISPR adaptation module A group of _cas_ genes dedicated to the selection and insertion of new spacers into CRISPR arrays. * TnpB A nuclease containing a RuvC-like domain that is encoded


by numerous transposons (insertion sequences) although not required for transposition. * IS605-like transposons A family of bacterial and archaeal insertion sequence elements that encode a


distinct transposase (TnpA) and often a second nuclease (TnpB) that is also found in numerous non-autonomous IS605-like transposons lacking TnpA. * Tn7-like transposons A derivative of Tn7


family transposons lacking some accessory genes involved in transposition and in some cases carrying derived CRISPR–Cas systems lacking the interference capacity. * CRISPR effector module A


suite of Cas proteins (Class 1 CRISPR–Cas systems) or a single large protein (Class 2 CRISPR–Cas systems) that are responsible for maturation of the CRISPR RNA and interference. * R-loops


Three-stranded structures that consist of a DNA–RNA hybrid and the displaced single-stranded DNA, formed during transcription and other processes including target recognition by CRISPR–Cas


effector complexes (proteins). * Protospacer A piece of DNA, typically from a mobile genetic element genome, that is inserted into a CRISPR array by the CRISPR adaptation complex, to become


a spacer. * CysH enzymes Enzymes of the adenosine 5′-phosphosulfate reductase family that reduce activated sulfate to sulfite; associated with many type IV CRISPR–Cas systems. * Exaptation


Co-option (recruitment) of a biological entity, such as a protein or DNA sequence, for a role that is distinct from its original function. * Anti-CRISPR proteins Diverse proteins encoded by


many bacterial and archaeal viruses that inhibit the host CRISPR–Cas systems, typically by binding and inactivating the effector complex (protein). * _Trans_activating RNAs (tracrRNAs). RNA


molecules encoded by all known type II CRISPR–Cas systems and some type V systems that consist of a sequence partially complementary to the corresponding repeat and a unique portion;


co-folding of the tracrRNA with the pre-crRNA is essential for crRNA maturation and interference by the respective CRISPR–Cas systems. * Protospacer adjacent motif (PAM). A short,


two-to-three-nucleotide motif, the presence of which next to the protospacer sequence is essential for both adaptation and interference by most of the CRISPR–Cas systems; different PAM


sequences are required by different CRISPR-Cas types and subtypes. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Faure, G., Shmakov, S.A., Yan, W.X.


_et al._ CRISPR–Cas in mobile genetic elements: counter-defence and beyond. _Nat Rev Microbiol_ 17, 513–525 (2019). https://doi.org/10.1038/s41579-019-0204-7 Download citation * Published:


05 June 2019 * Issue Date: August 2019 * DOI: https://doi.org/10.1038/s41579-019-0204-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative