Play all audios:
ABSTRACT Cognitive disorders are increasingly recognized in Parkinson disease (PD), even in early disease stages, and memory is one of the most affected cognitive domains. Classically,
hippocampal cholinergic system dysfunction was associated with memory disorders, whereas nigrostriatal dopaminergic system impairment was considered responsible for executive deficits.
Evidence from PD studies now supports involvement of the amygdala, which modulates emotional attribution to experiences. Here, we propose a tripartite model including the hippocampus,
striatum and amygdala as key structures for cognitive disorders in PD. First, the anatomo-functional relationships of these structures are explored and experimental evidence supporting their
role in cognitive dysfunction in PD is summarized. We then discuss the potential role of α-synuclein, a pathological hallmark of PD, in the tripartite memory system as a key mechanism in
the pathogenesis of memory disorders in the disease. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS
Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more
Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full
article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *
Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PARKINSON DISEASE PSYCHOSIS: FROM PHENOMENOLOGY TO NEUROBIOLOGICAL MECHANISMS Article 15 January 2024 SYNAPTIC MECHANISMS
UNDERLYING ONSET AND PROGRESSION OF MEMORY DEFICITS CAUSED BY HIPPOCAMPAL AND MIDBRAIN SYNUCLEINOPATHY Article Open access 16 June 2023 FAST-SPIKING PARVALBUMIN-POSITIVE INTERNEURONS: NEW
PERSPECTIVES OF TREATMENT AND FUTURE CHALLENGES IN DEMENTIA Article 18 December 2024 REFERENCES * Parkinson, J. An essay on the shaking palsy. 1817. _J. Neuropsychiatry Clin. Neurosci._ 14,
223–236 (2002). PubMed Google Scholar * Trousseau, A. _Lectures on Clinical Medicine Delivered at the Hôtel-Dieu, Paris_ (ed. Bazire, P. V.) (The New Sydenham Society, 1868). * Aarsland,
D. et al. Cognitive decline in Parkinson disease. _Nat. Rev. Neurol._ 13, 217–231 (2017). PubMed PubMed Central Google Scholar * Heinzel, S. et al. Update of the MDS research criteria for
prodromal Parkinson’s disease. _Mov. Disord._ 34, 1464–1470 (2019). PubMed Google Scholar * Fengler, S. et al. Cognitive changes in prodromal Parkinson’s disease: a review. _Mov. Disord._
32, 1655–1666 (2017). PubMed Google Scholar * Pedersen, K. F., Larsen, J. P., Tysnes, O. B. & Alves, G. Natural course of mild cognitive impairment in Parkinson disease: a 5-year
population-based study. _Neurology_ 88, 767–774 (2017). PubMed Google Scholar * Domellöf, M. E., Ekman, U., Forsgren, L. & Elgh, E. Cognitive function in the early phase of Parkinson’s
disease, a five-year follow-up. _Acta Neurol. Scand._ 132, 79–88 (2015). PubMed Google Scholar * Foubert-Samier, A. et al. Cognitive and functional changes in prediagnostic phase of
Parkinson disease: a population-based study. _Parkinsonism Relat. Disord._ 79, 40–46 (2020). PubMed Google Scholar * Dickson, D. W. Neuropathology of Parkinson disease. _Parkinsonism
Relat. Disord._ 46, S30–S33 (2018). PubMed Google Scholar * Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to
early synaptic dysfunction. _Cell Death Dis._ 14, 176 (2023). PubMed PubMed Central Google Scholar * Whitehouse, P. J., Hedreen, J. C., White, C. L. 3rd & Price, D. L. Basal forebrain
neurons in the dementia of Parkinson disease. _Ann. Neurol._ 13, 243–248 (1983). CAS PubMed Google Scholar * Rinne, J. O. et al. Cognitive impairment and the brain dopaminergic system in
Parkinson disease: [18F]fluorodopa positron emission tomographic study. _Arch. Neurol._ 57, 470–475 (2000). CAS PubMed Google Scholar * Calabresi, P., Picconi, B., Parnetti, L. & Di
Filippo, M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. _Lancet Neurol._ 5, 974–983 (2006). CAS PubMed
Google Scholar * McGaugh, J. L., Cahill, L. & Roozendaal, B. Involvement of the amygdala in memory storage: interaction with other brain systems. _Proc. Natl Acad. Sci. USA_ 93,
13508–13514 (1996). CAS PubMed PubMed Central Google Scholar * Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. _Brain_
143, 3077–3088 (2020). PubMed Google Scholar * Horsager, J., Knudsen, K. & Sommerauer, M. Clinical and imaging evidence of brain-first and body-first Parkinson’s disease. _Neurobiol.
Dis._ 164, 105626 (2022). CAS PubMed Google Scholar * McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. _Behav.
Neurosci._ 107, 3–22 (1993). CAS PubMed Google Scholar * Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. _J. Neurol. Neurosurg. Psychiatry_ 20,
11–21 (1957). CAS PubMed PubMed Central Google Scholar * Thiebaut de Schotten, M. et al. From phineas gage and monsieur leborgne to H.M.: revisiting disconnection syndromes. _Cereb.
Cortex_ 25, 4812–4827 (2015). CAS PubMed PubMed Central Google Scholar * Di Filippo, M. & Calabresi, P. Ischemic bilateral hippocampal dysfunction during transient global amnesia.
_Neurology_ 69, 493 (2007). PubMed Google Scholar * Squire, L. R. & Dede, A. J. Conscious and unconscious memory systems. _Cold Spring Harb. Perspect. Biol._ 7, a021667 (2015). PubMed
PubMed Central Google Scholar * Brodal, P. _The Central Nervous System_ (Oxford Academic, 2016). * Duvernoy, H., Cattin, F. & Risold, P.-Y. _The Human Hippocampus: Functional
Anatomy, Vascularization and Serial Sections with MRI_ 5–38 (Springer Berlin Heidelberg, 2013). * Schaffer, K. Beitrag zur histologie der ammonshornformation. _Arch. für mikroskopische
Anat._ 39, 611–632 (1892). Google Scholar * Cembrowski, M. S. & Spruston, N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. _Nat.
Rev. Neurosci._ 20, 193–204 (2019). CAS PubMed Google Scholar * Olbrich, H. G. & Braak, H. Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon’s horn.
_Anat. Embryol._ 173, 105–110 (1985). CAS Google Scholar * Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. _Physiol. Rev._ 97, 1619–1747 (2017). CAS PubMed PubMed
Central Google Scholar * Nicoll, R. A. A brief history of long-term potentiation. _Neuron_ 93, 281–290 (2017). CAS PubMed Google Scholar * Calabresi, P., Picconi, B., Tozzi, A. &
Ghiglieri, V. Interaction between basal ganglia and limbic circuits in learning and memory processes. _Parkinsonism Relat. Disord._ 22, S65–68 (2016). PubMed Google Scholar * Lüscher, C.
& Malenka, R. C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). _Cold Spring Harb. Perspect. Biol._ 4, a005710 (2012). PubMed PubMed Central Google
Scholar * Litvan, I., Mohr, E., Williams, J., Gomez, C. & Chase, T. N. Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. _J.
Neurol. Neurosurg. Psychiatry_ 54, 25–29 (1991). CAS PubMed PubMed Central Google Scholar * Burton, E. J., McKeith, I. G., Burn, D. J., Williams, E. D. & O’Brien, J. T. Cerebral
atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. _Brain_ 127, 791–800 (2004). PubMed Google Scholar
* Beyer, M. K., Larsen, J. P. & Aarsland, D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. _Neurology_ 69, 747–754 (2007). PubMed Google Scholar
* Weintraub, D. et al. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. _Mov. Disord._ 30, 919–927 (2015). PubMed PubMed Central Google
Scholar * Filippi, M. et al. Tracking cortical changes throughout cognitive decline in Parkinson’s disease. _Mov. Disord._ 35, 1987–1998 (2020). PubMed Google Scholar * Mak, E. et al.
Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. _Brain_ 138, 2974–2986 (2015). PubMed PubMed Central Google Scholar * La, C. et al.
Hippocampal CA1 subfield predicts episodic memory impairment in Parkinson’s disease. _Neuroimage Clin._ 23, 101824 (2019). PubMed PubMed Central Google Scholar * Broussard, J. I. et al.
Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. _Cell Rep._ 14, 1930–1939 (2016). CAS PubMed PubMed Central Google Scholar
* Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.
_Proc. Natl Acad. Sci. USA_ 113, 14835–14840 (2016). CAS PubMed PubMed Central Google Scholar * Lee, J. Y. et al. Dopamine facilitates associative memory encoding in the entorhinal
cortex. _Nature_ 598, 321–326 (2021). CAS PubMed PubMed Central Google Scholar * Huang, Y. Y. & Kandel, E. R. D1/D5 receptor agonists induce a protein synthesis-dependent late
potentiation in the CA1 region of the hippocampus. _Proc. Natl Acad. Sci. USA_ 92, 2446–2450 (1995). CAS PubMed PubMed Central Google Scholar * Titulaer, J. et al. The importance of
ventral hippocampal dopamine and norepinephrine in recognition memory. _Front. Behav. Neurosci._ 15, 667244 (2021). CAS PubMed PubMed Central Google Scholar * Bonito-Oliva, A. et al.
Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. _Biol. Psychiatry_ 75, 701–710 (2014). CAS PubMed Google Scholar * Sala, A. et al. In vivo human
molecular neuroimaging of dopaminergic vulnerability along the Alzheimer’s disease phases. _Alzheimers Res. Ther._ 13, 187 (2021). CAS PubMed PubMed Central Google Scholar * Calabresi,
P., Castrioto, A., Di Filippo, M. & Picconi, B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. _Lancet Neurol._ 12,
811–821 (2013). CAS PubMed Google Scholar * Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T. & DeLong, M. R. Alzheimer disease: evidence for selective loss of cholinergic
neurons in the nucleus basalis. _Ann. Neurol._ 10, 122–126 (1981). CAS PubMed Google Scholar * Francis, P. T., Palmer, A. M., Snape, M. & Wilcock, G. K. The cholinergic hypothesis of
Alzheimer’s disease: a review of progress. _J. Neurol. Neurosurg. Psychiatry_ 66, 137–147 (1999). CAS PubMed PubMed Central Google Scholar * Hall, H. et al. Hippocampal Lewy pathology
and cholinergic dysfunction are associated with dementia in Parkinson’s disease. _Brain_ 137, 2493–2508 (2014). PubMed Google Scholar * Petrou, M. et al. In vivo imaging of human
cholinergic nerve terminals with (–)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. _J. Nucl. Med._ 55, 396–404 (2014). CAS PubMed Google
Scholar * van der Zee, S., Müller, M., Kanel, P., van Laar, T. & Bohnen, N. I. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. _Mov. Disord._ 36,
642–650 (2021). PubMed Google Scholar * van der Zee, S. et al. Altered cholinergic innervation in de novo Parkinson’s disease with and without cognitive impairment. _Mov. Disord._ 37,
713–723 (2022). PubMed PubMed Central Google Scholar * Legault-Denis, C. et al. Normal cognition in Parkinson’s disease may involve hippocampal cholinergic compensation: an exploratory
PET imaging study with [18F]-FEOBV. _Parkinsonism Relat. Disord._ 91, 162–166 (2021). CAS PubMed Google Scholar * Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal
circuits during sequence learning. _Nature_ 466, 457–462 (2010). CAS PubMed PubMed Central Google Scholar * Calabresi, P. & Di Filippo, M. Neuroscience: brain’s traffic lights.
_Nature_ 466, 449 (2010). CAS PubMed Google Scholar * Gai, W. P., Halliday, G. M., Blumbergs, P. C., Geffen, L. B. & Blessing, W. W. Substance P-containing neurons in the mesopontine
tegmentum are severely affected in Parkinson’s disease. _Brain_ 114, 2253–2267 (1991). PubMed Google Scholar * Lotharius, J. & Brundin, P. Pathogenesis of Parkinson’s disease:
dopamine, vesicles and α-synuclein. _Nat. Rev. Neurosci._ 3, 932–942 (2002). CAS PubMed Google Scholar * Chen, S. Y. et al. Parcellation of the striatal complex into dorsal and ventral
districts. _Proc. Natl Acad. Sci. USA_ 117, 7418–7429 (2020). CAS PubMed PubMed Central Google Scholar * Joel, D. & Weiner, I. The connections of the dopaminergic system with the
striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. _Neuroscience_ 96, 451–474 (2000). CAS PubMed Google Scholar *
Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. _eLife_ 5, e19103 (2016). PubMed PubMed Central Google Scholar * Thorn,
C. A., Atallah, H., Howe, M. & Graybiel, A. M. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. _Neuron_ 66, 781–795 (2010). CAS
PubMed PubMed Central Google Scholar * Ashby, F. G., Turner, B. O. & Horvitz, J. C. Cortical and basal ganglia contributions to habit learning and automaticity. _Trends Cogn. Sci._
14, 208–215 (2010). PubMed PubMed Central Google Scholar * Graveland, G. A. & DiFiglia, M. The frequency and distribution of medium-sized neurons with indented nuclei in the primate
and rodent neostriatum. _Brain Res._ 327, 307–311 (1985). CAS PubMed Google Scholar * Dautan, D. et al. A major external source of cholinergic innervation of the striatum and nucleus
accumbens originates in the brainstem. _J. Neurosci._ 34, 4509–4518 (2014). PubMed PubMed Central Google Scholar * Burke, D. A., Rotstein, H. G. & Alvarez, V. A. Striatal local
circuitry: a new framework for lateral inhibition. _Neuron_ 96, 267–284 (2017). CAS PubMed PubMed Central Google Scholar * Pisani, A., Bernardi, G., Ding, J. & Surmeier, D. J.
Re-emergence of striatal cholinergic interneurons in movement disorders. _Trends Neurosci._ 30, 545–553 (2007). CAS PubMed Google Scholar * Izzo, P. N. & Bolam, J. P. Cholinergic
synaptic input to different parts of spiny striatonigral neurons in the rat. _J. Comp. Neurol._ 269, 219–234 (1988). CAS PubMed Google Scholar * Ghiglieri, V., Sgobio, C., Costa, C.,
Picconi, B. & Calabresi, P. Striatum-hippocampus balance: from physiological behavior to interneuronal pathology. _Prog. Neurobiol._ 94, 102–114 (2011). PubMed Google Scholar *
Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Acetylcholine-mediated modulation of striatal function. _Trends Neurosci._ 23, 120–126 (2000). CAS PubMed Google
Scholar * Guo, Q. et al. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. _PLoS One_ 10, e0123381 (2015). PubMed PubMed Central
Google Scholar * Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. _Nat. Neurosci._ 17,
1022–1030 (2014). CAS PubMed Google Scholar * Perez, S. et al. Striatum expresses region-specific plasticity consistent with distinct memory abilities. _Cell Rep._ 38, 110521 (2022). CAS
PubMed Google Scholar * Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC
activation. _Eur. J. Neurosci._ 10, 2887–2895 (1998). CAS PubMed Google Scholar * Aoki, S. et al. Cholinergic interneurons in the rat striatum modulate substitution of habits. _Eur. J.
Neurosci._ 47, 1194–1205 (2018). PubMed PubMed Central Google Scholar * Ahmed, N. Y. et al. Er81 transcription factor fine-tunes striatal cholinergic interneuron activity and drives habit
formation. _J. Neurosci._ 41, 4392–4409 (2021). CAS PubMed PubMed Central Google Scholar * Cai, Y., Nielsen, B. E., Boxer, E. E., Aoto, J. & Ford, C. P. Loss of nigral excitation of
cholinergic interneurons contributes to parkinsonian motor impairments. _Neuron_ 109, 1137–1149.e5 (2021). CAS PubMed PubMed Central Google Scholar * Sanchez-Catasus, C. A., Bohnen, N.
I., D’Cruz, N. & Müller, M. Striatal acetylcholine-dopamine imbalance in Parkinson disease: in vivo neuroimaging study with dual-tracer PET and dopaminergic PET-informed correlational
tractography. _J. Nucl. Med._ 63, 438–445 (2022). CAS PubMed PubMed Central Google Scholar * Jokinen, P. et al. Impaired cognitive performance in Parkinson’s disease is related to
caudate dopaminergic hypofunction and hippocampal atrophy. _Parkinsonism Relat. Disord._ 15, 88–93 (2009). PubMed Google Scholar * Müller, M. L. & Bohnen, N. I. Cholinergic dysfunction
in Parkinson’s disease. _Curr. Neurol. Neurosci. Rep._ 13, 377 (2013). PubMed PubMed Central Google Scholar * Xia, Y. et al. Reduced cortical cholinergic innervation measured using
[18F]-FEOBV PET imaging correlates with cognitive decline in mild cognitive impairment. _Neuroimage Clin._ 34, 102992 (2022). PubMed PubMed Central Google Scholar * Emre, M. et al.
Rivastigmine for dementia associated with Parkinson’s disease. _N. Engl. J. Med._ 351, 2509–2518 (2004). CAS PubMed Google Scholar * Dubois, B. et al. Donepezil in Parkinson’s disease
dementia: a randomized, double-blind efficacy and safety study. _Mov. Disord._ 27, 1230–1238 (2012). CAS PubMed Google Scholar * Hiraoka, K. et al. Cholinergic deficit and response to
donepezil therapy in Parkinson’s disease with dementia. _Eur. Neurol._ 68, 137–143 (2012). CAS PubMed Google Scholar * Bohnen, N. I. et al. Cholinergic system changes of falls and
freezing of gait in Parkinson’s disease. _Ann. Neurol._ 85, 538–549 (2019). CAS PubMed PubMed Central Google Scholar * Poldrack, R. A. & Packard, M. G. Competition among multiple
memory systems: converging evidence from animal and human brain studies. _Neuropsychologia_ 41, 245–251 (2003). PubMed Google Scholar * Moser, M. B., Rowland, D. C. & Moser, E. I.
Place cells, grid cells, and memory. _Cold Spring Harb. Perspect. Biol._ 7, a021808 (2015). PubMed PubMed Central Google Scholar * Montagrin, A., Saiote, C. & Schiller, D. The social
hippocampus. _Hippocampus_ 28, 672–679 (2018). PubMed Google Scholar * Brasted, P. J., Humby, T., Dunnett, S. B. & Robbins, T. W. Unilateral lesions of the dorsal striatum in rats
disrupt responding in egocentric space. _J. Neurosci._ 17, 8919–8926 (1997). CAS PubMed PubMed Central Google Scholar * Ferbinteanu, J. The hippocampus and dorsolateral striatum
integrate distinct types of memories through time and space, respectively. _J. Neurosci._ 40, 9055–9065 (2020). CAS PubMed PubMed Central Google Scholar * Knowlton, B. J., Mangels, J. A.
& Squire, L. R. A neostriatal habit learning system in humans. _Science_ 273, 1399–1402 (1996). CAS PubMed Google Scholar * White, N. M., Packard, M. G. & McDonald, R. J.
Dissociation of memory systems: the story unfolds. _Behav. Neurosci._ 127, 813–834 (2013). PubMed Google Scholar * Delcasso, S. et al. Functional relationships between the hippocampus and
dorsomedial striatum in learning a visual scene-based memory task in rats. _J. Neurosci._ 34, 15534–15547 (2014). CAS PubMed PubMed Central Google Scholar * Caproni, S. et al.
Subclinical visuospatial impairment in Parkinson’s disease: the role of basal ganglia and limbic system. _Front. Neurol._ 5, 152 (2014). PubMed PubMed Central Google Scholar *
Nagano-Saito, A. et al. Effect of mild cognitive impairment on the patterns of neural activity in early Parkinson’s disease. _Neurobiol. Aging_ 35, 223–231 (2014). PubMed Google Scholar *
Pourzinal, D. et al. Hippocampal correlates of episodic memory in Parkinson’s disease: a systematic review of magnetic resonance imaging studies. _J. Neurosci. Res._ 99, 2097–2116 (2021).
CAS PubMed Google Scholar * Nagano-Saito, A. et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. _Neurology_ 64, 224–229 (2005). CAS PubMed Google
Scholar * Weintraub, D. et al. Neurodegeneration across stages of cognitive decline in Parkinson disease. _Arch. Neurol._ 68, 1562–1568 (2011). PubMed PubMed Central Google Scholar *
Mesulam, M. M. From sensation to cognition. _Brain_ 121, 1013–1052 (1998). PubMed Google Scholar * Catani, M., Dell’acqua, F. & Thiebaut de Schotten, M. A revised limbic system model
for memory, emotion and behaviour. _Neurosci. Biobehav. Rev._ 37, 1724–1737 (2013). PubMed Google Scholar * Terranova, J. I. et al. Hippocampal-amygdala memory circuits govern
experience-dependent observational fear. _Neuron_ 110, 1416–1431.e3 (2022). CAS PubMed PubMed Central Google Scholar * Janak, P. H. & Tye, K. M. From circuits to behaviour in the
amygdala. _Nature_ 517, 284–292 (2015). CAS PubMed PubMed Central Google Scholar * Ressler, K. J. Amygdala activity, fear, and anxiety: modulation by stress. _Biol. Psychiatry_ 67,
1117–1119 (2010). PubMed PubMed Central Google Scholar * Adolphs, R. What does the amygdala contribute to social cognition? _Ann. N. Y. Acad. Sci._ 1191, 42–61 (2010). PubMed PubMed
Central Google Scholar * Inman, C. S. et al. Human amygdala stimulation effects on emotion physiology and emotional experience. _Neuropsychologia_ 145, 106722 (2020). PubMed Google
Scholar * Anglada-Figueroa, D. & Quirk, G. J. Lesions of the basal amygdala block expression of conditioned fear but not extinction. _J. Neurosci._ 25, 9680–9685 (2005). CAS PubMed
PubMed Central Google Scholar * Bravo-Rivera, C., Roman-Ortiz, C., Brignoni-Perez, E., Sotres-Bayon, F. & Quirk, G. J. Neural structures mediating expression and extinction of
platform-mediated avoidance. _J. Neurosci._ 34, 9736–9742 (2014). CAS PubMed PubMed Central Google Scholar * Schrag, A. & Taddei, R. N. Depression and anxiety in Parkinson’s disease.
_Int. Rev. Neurobiol._ 133, 623–655 (2017). PubMed Google Scholar * Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. _Nat. Rev. Neurosci._ 16, 317–331
(2015). CAS PubMed Google Scholar * Jhang, J. et al. Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. _Nat. Commun._ 9, 2744 (2018).
PubMed PubMed Central Google Scholar * Vriend, C. et al. A smaller amygdala is associated with anxiety in Parkinson’s disease: a combined FreeSurfer-VBM study. _J. Neurol. Neurosurg.
Psychiatry_ 87, 493–500 (2016). PubMed Google Scholar * Wee, N. et al. Neural correlates of anxiety symptoms in mild Parkinson’s disease: a prospective longitudinal voxel-based morphometry
study. _J. Neurol. Sci._ 371, 131–136 (2016). PubMed Google Scholar * Carey, G. et al. Anxiety in Parkinson’s disease is associated with changes in the brain fear circuit. _Parkinsonism
Relat. Disord._ 80, 89–97 (2020). PubMed Google Scholar * Criaud, M. et al. Anxiety in Parkinson’s disease: abnormal resting activity and connectivity. _Brain Res._ 1753, 147235 (2021).
CAS PubMed Google Scholar * Carey, G. et al. Neuroimaging of anxiety in Parkinson’s disease: a systematic review. _Mov. Disord._ 36, 327–339 (2021). PubMed Google Scholar * Borghammer,
P. et al. Neuropathological evidence of body-first vs. brain-first Lewy body disease. _Neurobiol. Dis._ 161, 105557 (2021). CAS PubMed Google Scholar * Kim, J. J., Lee, H. J., Han, J. S.
& Packard, M. G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. _J. Neurosci._ 21, 5222–5228 (2001). CAS PubMed PubMed Central
Google Scholar * Schwabe, L. Stress and the engagement of multiple memory systems: integration of animal and human studies. _Hippocampus_ 23, 1035–1043 (2013). PubMed Google Scholar *
Burré, J. The synaptic function of α-synuclein. _J. Parkinsons Dis._ 5, 699–713 (2015). PubMed PubMed Central Google Scholar * Ghiglieri, V., Calabrese, V. & Calabresi, P.
Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. _Front. Neurol._ 9, 295 (2018). PubMed PubMed Central Google Scholar * Picconi, B., Piccoli, G. & Calabresi, P.
Synaptic dysfunction in Parkinson’s disease. _Adv. Exp. Med. Biol._ 970, 553–572 (2012). CAS PubMed Google Scholar * Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. &
Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. _Proc. Natl Acad. Sci. USA_ 95, 6469–6473 (1998). CAS PubMed PubMed
Central Google Scholar * Marino, G., Calabresi, P. & Ghiglieri, V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. _Handb. Clin. Neurol._ 184,
153–166 (2022). PubMed Google Scholar * Bertrand, E. et al. Limbic neuropathology in idiopathic Parkinson’s disease with concomitant dementia. _Folia Neuropathol._ 42, 141–150 (2004).
PubMed Google Scholar * Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. _Neurobiol. Aging_ 24, 197–211 (2003). PubMed Google Scholar * Kim, S. et al.
Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. _Neuron_ 103, 627–641.e7 (2019). CAS PubMed PubMed Central Google Scholar *
Uemura, N. et al. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. _Mol.
Neurodegener._ 13, 21 (2018). PubMed PubMed Central Google Scholar * Stoyka, L. E. et al. Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded
α-synuclein inclusions. _Neurobiol. Dis._ 134, 104708 (2020). CAS PubMed Google Scholar * Pieperhoff, P. et al. Regional changes of brain structure during progression of idiopathic
Parkinson’s disease — a longitudinal study using deformation based morphometry. _Cortex_ 151, 188–210 (2022). PubMed Google Scholar * Pfeiffer, H. C., Løkkegaard, A., Zoetmulder, M.,
Friberg, L. & Werdelin, L. Cognitive impairment in early-stage non-demented Parkinson’s disease patients. _Acta Neurol. Scand._ 129, 307–318 (2014). CAS PubMed Google Scholar *
Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. _Nat. Rev. Neurosci._ 14, 38–48 (2013). CAS
PubMed PubMed Central Google Scholar * Spillantini, M. G. et al. α-Synuclein in Lewy bodies. _Nature_ 388, 839–840 (1997). CAS PubMed Google Scholar * Baba, M. et al. Aggregation of
alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. _Am. J. Pathol._ 152, 879–884 (1998). CAS PubMed PubMed Central Google Scholar * Roberts, R.
F., Wade-Martins, R. & Alegre-Abarrategui, J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. _Brain_ 138,
1642–1657 (2015). PubMed PubMed Central Google Scholar * Sekiya, H. et al. Discrepancy between distribution of alpha-synuclein oligomers and Lewy-related pathology in Parkinson’s disease.
_Acta Neuropathol. Commun._ 10, 133 (2022). CAS PubMed PubMed Central Google Scholar * Cascella, R. et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in
neuronal cells. _Nat. Commun._ 12, 1814 (2021). CAS PubMed PubMed Central Google Scholar * Alam, P., Bousset, L., Melki, R. & Otzen, D. E. α-Synuclein oligomers and fibrils: a
spectrum of species, a spectrum of toxicities. _J. Neurochem._ 150, 522–534 (2019). CAS PubMed Google Scholar * Alegre-Abarrategui, J. et al. Selective vulnerability in
α-synucleinopathies. _Acta Neuropathol._ 138, 681–704 (2019). PubMed PubMed Central Google Scholar * Chen, L. et al. Synaptic location is a determinant of the detrimental effects of
α-synuclein pathology to glutamatergic transmission in the basolateral amygdala. _eLife_ 11, e78055 (2022). CAS PubMed PubMed Central Google Scholar * Torres, E. R. S. et al.
Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson’s disease. _Neurobiol. Dis._ 158,
105478 (2021). CAS PubMed PubMed Central Google Scholar * Schell, H., Boden, C., Chagas, A. M. & Kahle, P. J. Impaired c-Fos and polo-like kinase 2 induction in the limbic system of
fear-conditioned α-synuclein transgenic mice. _PLoS One_ 7, e50245 (2012). CAS PubMed PubMed Central Google Scholar * Kasongo, D. W., de Leo, G., Vicario, N., Leanza, G. & Legname,
G. Chronic α-synuclein accumulation in rat hippocampus induces lewy bodies formation and specific cognitive impairments. _eNeuro_ 7, 10.1523/ENEURO.0009-20.2020 (2020). * Costa, C. et al.
Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. _Brain_ 135, 1884–1899 (2012). PubMed Google Scholar *
Flores-Cuadrado, A., Ubeda-Bañon, I., Saiz-Sanchez, D., de la Rosa-Prieto, C. & Martinez-Marcos, A. Hippocampal α-synuclein and interneurons in Parkinson’s disease: data from human and
mouse models. _Mov. Disord._ 31, 979–988 (2016). CAS PubMed Google Scholar * Liu, A. K. L. et al. Hippocampal CA2 Lewy pathology is associated with cholinergic degeneration in Parkinson’s
disease with cognitive decline. _Acta Neuropathol. Commun._ 7, 61 (2019). PubMed PubMed Central Google Scholar * Froula, J. M. et al. α-Synuclein fibril-induced paradoxical structural
and functional defects in hippocampal neurons. _Acta Neuropathol. Commun._ 6, 35 (2018). PubMed PubMed Central Google Scholar * Yagishita, S. et al. A critical time window for dopamine
actions on the structural plasticity of dendritic spines. _Science_ 345, 1616–1620 (2014). CAS PubMed PubMed Central Google Scholar * Belloso-Iguerategui, A. et al. Hippocampal synaptic
failure is an early event in experimental parkinsonism with subtle cognitive deficit. _Brain_ https://doi.org/10.1093/brain/awad227 (2023). Article PubMed PubMed Central Google Scholar *
Villar-Conde, S. et al. The human hippocampus in Parkinson’s disease: an integrative stereological and proteomic study. _J. Parkinsons Dis._ 11, 1345–1365 (2021). CAS PubMed PubMed
Central Google Scholar * Giordano, N. et al. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson’s disease. _Brain_ 141, 505–520 (2018). PubMed Google Scholar
* Tozzi, A. et al. Alpha-synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-methyl-D-aspartate receptor subunit.
_Biol. Psychiatry_ 79, 402–414 (2016). CAS PubMed Google Scholar * Tozzi, A. et al. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal
circuit. _Brain_ 144, 3477–3491 (2021). PubMed PubMed Central Google Scholar * Durante, V. et al. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic
dysfunction and visuospatial memory alteration. _Brain_ 142, 1365–1385 (2019). PubMed Google Scholar * Picconi, B. et al. Inhibition of phosphodiesterases rescues striatal long-term
depression and reduces levodopa-induced dyskinesia. _Brain_ 134, 375–387 (2011). PubMed Google Scholar * Tozzi, A. et al. Mechanisms underlying altered striatal synaptic plasticity in old
A53T-α synuclein overexpressing mice. _Neurobiol. Aging_ 33, 1792–1799 (2012). CAS PubMed Google Scholar * Jung Lung, H. et al. Quantitative study of 18F-(+)DTBZ image: comparison of PET
template-based and MRI based image analysis. _Sci. Rep._ 8, 16027 (2018). PubMed PubMed Central Google Scholar Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Neurology
Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy Salvatore Citro, Angelo Tiziano Cimmino, Guido Maria Giuffrè, Camillo Marra & Paolo Calabresi *
Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy Giulia Di Lazzaro, Guido Maria Giuffrè, Camillo Marra & Paolo Calabresi Authors * Salvatore Citro
View author publications You can also search for this author inPubMed Google Scholar * Giulia Di Lazzaro View author publications You can also search for this author inPubMed Google Scholar
* Angelo Tiziano Cimmino View author publications You can also search for this author inPubMed Google Scholar * Guido Maria Giuffrè View author publications You can also search for this
author inPubMed Google Scholar * Camillo Marra View author publications You can also search for this author inPubMed Google Scholar * Paolo Calabresi View author publications You can also
search for this author inPubMed Google Scholar CONTRIBUTIONS P.C.: manuscript conception. S.C.: literature search and first draft. A.T.C. and G.D.L.: figure preparation. P.C., G.D.L., G.M.G.
and C.M.: revision of the manuscript, critical discussion, and proofreading of the final version. CORRESPONDING AUTHOR Correspondence to Paolo Calabresi. ETHICS DECLARATIONS COMPETING
INTERESTS P.C. received/receives research support, speaker honoraria, and support to attend national and international conferences (not related to the present study) from Abbvie, Bayer
Schering, Bial, Biogen-Dompè, Biogen-Idec, Eisai, Lilly, Lundbeck, Lusofarmaco, Merck-Serono, Novartis, Sanofi-Genzyme, Teva, UCB Pharma and Zambon. The other authors reported no funding
from any institution, including personal relationships, interests, grants, employment, affiliations, patents, inventions, honoraria, consultancies, royalties, stock options/ownership, or
expert testimony for the last 12 months, biomedical financial interests or potential conflicts of interest. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Neurology_ thanks Yoland Smith
and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to
this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Citro, S., Lazzaro, G.D., Cimmino, A.T. _et al._ A multiple hits
hypothesis for memory dysfunction in Parkinson disease. _Nat Rev Neurol_ 20, 50–61 (2024). https://doi.org/10.1038/s41582-023-00905-z Download citation * Accepted: 09 November 2023 *
Published: 05 December 2023 * Issue Date: January 2024 * DOI: https://doi.org/10.1038/s41582-023-00905-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read this
content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative