Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases

Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases

Play all audios:

Loading...

ABSTRACT Glycosylation is an abundant post-translational modification that is important in disease and biotechnology. Current methods to understand and engineer glycosylation cannot


sufficiently explore the vast experimental landscapes required to accurately predict and design glycosylation sites modified by glycosyltransferases. Here we describe a systematic platform


for glycosylation sequence characterization and optimization by rapid expression and screening (GlycoSCORES), which combines cell-free protein synthesis and mass spectrometry of


self-assembled monolayers. We produced six N- and O-linked polypeptide-modifying glycosyltransferases from bacteria and humans in vitro and rigorously determined their substrate


specificities using 3,480 unique peptides and 13,903 unique reaction conditions. We then used GlycoSCORES to optimize and design small glycosylation sequence motifs that directed efficient


N-linked glycosylation in vitro and in the _Escherichia coli_ cytoplasm for three heterologous proteins, including the human immunoglobulin Fc domain. We find that GlycoSCORES is a broadly


applicable method to facilitate fundamental understanding of glycosyltransferases and engineer synthetic glycoproteins. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A UNIVERSAL GLYCOENZYME BIOSYNTHESIS PIPELINE THAT


ENABLES EFFICIENT CELL-FREE REMODELING OF GLYCANS Article Open access 24 October 2022 RESTORING PROTEIN GLYCOSYLATION WITH GLYCOSHAPE Article Open access 14 October 2024 AN EFFICIENT


_C_-GLYCOSIDE PRODUCTION PLATFORM ENABLED BY RATIONALLY TUNING THE CHEMOSELECTIVITY OF GLYCOSYLTRANSFERASES Article Open access 15 October 2024 REFERENCES * Khoury, G. A., Baliban, R. C.


& Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. _Sci. Rep._ 1, 90 (2011). Article  CAS  PubMed


Central  Google Scholar  * Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. _Science_ 291, 2364–2369 (2001). Article  CAS  PubMed  Google Scholar  * Sethuraman, N.


& Stadheim, T. A. Challenges in therapeutic glycoprotein production. _Curr. Opin. Biotechnol._ 17, 341–346 (2006). Article  CAS  PubMed  Google Scholar  * Elliott, S. et al. Enhancement


of therapeutic protein in vivo activities through glycoengineering. _Nat. Biotechnol._ 21, 414–421 (2003). Article  CAS  PubMed  Google Scholar  * Chung, C. H. et al. Cetuximab-induced


anaphylaxis and IgE specific for galactose-α-1,3-galactose. _N. Engl. J. Med._ 358, 1109–1117 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin, C.-W. et al. A common


glycan structure on immunoglobulin G for enhancement of effector functions. _Proc. Natl Acad. Sci. USA_ 112, 10611–10616 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Clausen, H., Wandall, H.H., Steentoft, C., Stanley, P. & Schnaar, R.L. in Essentials of Glycobiology. (eds. A. Varki et al.) 713–728 (Cold Spring Harbor Laboratory Press, Cold Spring


Harbor, NY, 2015). * Valderrama-Rincon, J. D. et al. An engineered eukaryotic protein glycosylation pathway in _Escherichia coli_. _Nat. Chem. Biol._ 8, 434–436 (2012). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Keys, T. G. & Aebi, M. Engineering protein glycosylation in prokaryotes. _Curr. Opin. Syst. Biol._ 5, 23–31 (2017). Article  Google Scholar  * Wang,


L.-X. & Davis, B. G. Realizing the promise of chemical glycobiology. _Chem. Sci._ 4, 3381–3394 (2013). Article  CAS  PubMed  Google Scholar  * Yang, Z. et al. Engineered CHO cells for


production of diverse, homogeneous glycoproteins. _Nat. Biotechnol._ 33, 842–844 (2015). Article  CAS  PubMed  Google Scholar  * Li, H. et al. Optimization of humanized IgGs in


glycoengineered _Pichia pastoris_. _Nat. Biotechnol._ 24, 210–215 (2006). Article  CAS  PubMed  Google Scholar  * Xu, Y. et al. A novel enzymatic method for synthesis of glycopeptides


carrying natural eukaryotic N-glycans. _Chem. Commun. (Camb.)_ 53, 9075–9077 (2017). Article  CAS  Google Scholar  * Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. &


Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. _Nucleic Acids Res._ 42, D490–D495 (2014). Article  CAS  PubMed  Google Scholar  * Ban, L. et al. Discovery of


glycosyltransferases using carbohydrate arrays and mass spectrometry. _Nat. Chem. Biol._ 8, 769–773 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pathak, S. et al. The


active site of O-GlcNAc transferase imposes constraints on substrate sequence. _Nat. Struct. Mol. Biol._ 22, 744–750 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ortiz-Meoz, R. F., Merbl, Y., Kirschner, M. W. & Walker, S. Microarray discovery of new OGT substrates: the medulloblastoma oncogene OTX2 is O-GlcNAcylated. _J. Am. Chem. Soc._ 136,


4845–4848 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Robinson, P. V., Tsai, C. T., de Groot, A. E., McKechnie, J. L. & Bertozzi, C. R. Glyco-seek: ultrasensitive


detection of protein-specific glycosylation by proximity ligation polymerase chain reaction. _J. Am. Chem. Soc._ 138, 10722–10725 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Naegeli, A. et al. Substrate specificity of cytoplasmic N-glycosyltransferase. _J. Biol. Chem._ 289, 24521–24532 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Naegeli,


A. et al. Molecular analysis of an alternative N-glycosylation machinery by functional transfer from _Actinobacillus pleuropneumoniae_ to _Escherichia coli_. _J. Biol. Chem._ 289, 2170–2179


(2014). Article  CAS  PubMed  Google Scholar  * Keys, T. G. et al. A biosynthetic route for polysialylating proteins in _Escherichia coli_. _Metab. Eng._ 44, 293–301 (2017). Article  CAS 


PubMed  Google Scholar  * Cuccui, J. et al. The N-linking glycosylation system from _Actinobacillus pleuropneumoniae_ is required for adhesion and has potential use in glycoengineering.


_Open Biol._ 7, 160212 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schwarz, F., Fan, Y. Y., Schubert, M. & Aebi, M. Cytoplasmic N-glycosyltransferase of


_Actinobacillus pleuropneumoniae_ is an inverting enzyme and recognizes the NX(S/T) consensus sequence. _J. Biol. Chem._ 286, 35267–35274 (2011). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Song, Q. et al. Production of homogeneous glycoprotein with multi-site modifications by an engineered N-glycosyltransferase mutant. _J. Biol. Chem._ 292, 8856–8863 (2017).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Gross, J. et al. The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. _J.


Biol. Chem._ 283, 26010–26015 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kawai, F. et al. Structural insights into the glycosyltransferase activity of the


_Actinobacillus pleuropneumoniae_ HMW1C-like protein. _J. Biol. Chem._ 286, 38546–38557 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lomino, J. V. et al. A two-step


enzymatic glycosylation of polypeptides with complex N-glycans. _Bioorg. Med. Chem._ 21, 2262–2270 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, M. M., Glover, K. J.


& Imperiali, B. From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in _C. jejuni_. _Biochemistry_ 46, 5579–5585 (2007). Article  CAS 


PubMed  Google Scholar  * Fisher, A. C. et al. Production of secretory and extracellular N-linked glycoproteins in _Escherichia coli_. _Appl. Environ. Microbiol._ 77, 871–881 (2011). Article


  CAS  PubMed  Google Scholar  * Carlson, E. D., Gan, R., Hodgman, C. E. & Jewett, M. C. Cell-free protein synthesis: applications come of age. _Biotechnol. Adv._ 30, 1185–1194 (2012).


Article  CAS  PubMed  Google Scholar  * Kuo, H. Y., DeLuca, T. A., Miller, W. M. & Mrksich, M. Profiling deacetylase activities in cell lysates with peptide arrays and SAMDI mass


spectrometry. _Anal. Chem._ 85, 10635–10642 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kornacki, J. R., Stuparu, A. D. & Mrksich, M. Acetyltransferase p300/CBP


associated Factor (PCAF) regulates crosstalk-dependent acetylation of histone H3 by distal site recognition. _ACS Chem. Biol._ 10, 157–164 (2015). Article  CAS  PubMed  Google Scholar  *


Kim, J. & Mrksich, M. Profiling the selectivity of DNA ligases in an array format with mass spectrometry. _Nucleic Acids Res._ 38, e2 (2010). Article  CAS  PubMed  Google Scholar  *


Laurent, N. et al. Enzymatic glycosylation of peptide arrays on gold surfaces. _ChemBioChem_ 9, 883–887 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Laurent, N. et al.


SPOT synthesis of peptide arrays on self-assembled monolayers and their evaluation as enzyme substrates. _ChemBioChem_ 9, 2592–2596 (2008). Article  CAS  PubMed  Google Scholar  * Hussain,


M. R., Hoessli, D. C. & Fang, M. N-acetylgalactosaminyltransferases in cancer. _Oncotarget_ 7, 54067–54081 (2016). Article  PubMed  PubMed Central  Google Scholar  * Schjoldager, K. T.


et al. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. _Proc. Natl Acad. Sci. USA_ 109, 9893–9898 (2012).


Article  PubMed  PubMed Central  Google Scholar  * Yoshida, A., Suzuki, M., Ikenaga, H. & Takeuchi, M. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation.


_J. Biol. Chem._ 272, 16884–16888 (1997). Article  CAS  PubMed  Google Scholar  * Gerken, T. A., Raman, J., Fritz, T. A. & Jamison, O. Identification of common and unique peptide


substrate preferences for the UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases T1 and T2 derived from oriented random peptide substrates. _J. Biol. Chem._ 281, 32403–32416 (2006).


Article  CAS  PubMed  Google Scholar  * Kong, Y. et al. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. _Glycobiology_ 25, 55–65 (2015). Article


  CAS  PubMed  Google Scholar  * Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. _EMBO J._ 32, 1478–1488 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Wang, A. C., Jensen, E. H., Rexach, J. E., Vinters, H. V. & Hsieh-Wilson, L. C. Loss of _O_-GlcNAc glycosylation in forebrain excitatory neurons


induces neurodegeneration. _Proc. Natl Acad. Sci. USA_ 113, 15120–15125 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, X. et al. Phosphoinositide signalling links


O-GlcNAc transferase to insulin resistance. _Nature_ 451, 964–969 (2008). Article  CAS  PubMed  Google Scholar  * Liu, X. et al. A peptide panel investigation reveals the acceptor


specificity of O-GlcNAc transferase. _FASEB J._ 28, 3362–3372 (2014). Article  CAS  PubMed  Google Scholar  * Chalkley, R. J., Thalhammer, A., Schoepfer, R. & Burlingame, A. L.


Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. _Proc. Natl Acad. Sci. USA_ 106, 8894–8899 (2009). Article  PubMed


  PubMed Central  Google Scholar  * Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. _Nature_


469, 564–567 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, K. J., Grass, S., Paek, S., St Geme, J. W. III & Yeo, H. J. The _Actinobacillus pleuropneumoniae_


HMW1C-like glycosyltransferase mediates N-linked glycosylation of the _Haemophilus influenzae_ HMW1 adhesin. _PLoS One_ 5, e15888 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Haselberg, R., de Jong, G. J. & Somsen, G. W. Low-flow sheathless capillary electrophoresis-mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins.


_Anal. Chem._ 85, 2289–2296 (2013). Article  CAS  PubMed  Google Scholar  * Schoborg, J. A. et al. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases.


_Biotechnol. Bioeng._ 115, 739–750 (2018). Article  CAS  PubMed  Google Scholar  * Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using


Clustal Omega. _Mol. Syst. Biol._ 7, 539 (2011). Article  PubMed  PubMed Central  Google Scholar  * Gurard-Levin, Z. A., Scholle, M. D., Eisenberg, A. H. & Mrksich, M. High-throughput


screening of small molecule libraries using SAMDI mass spectrometry. _ACS Comb. Sci._ 13, 347–350 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goerke, A. R. & Swartz,


J. R. Development of cell-free protein synthesis platforms for disulfide bonded proteins. _Biotechnol. Bioeng._ 99, 351–367 (2008). Article  CAS  PubMed  Google Scholar  * Espah Borujeni,


A., Channarasappa, A. S. & Salis, H. M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites.


_Nucleic Acids Res._ 42, 2646–2659 (2014). Article  CAS  PubMed  Google Scholar  * Martin, R. W. _et al_. Cell-free protein synthesis from genomically recoded bacteria enables multisite


incorporation of noncanonical amino acids. _Nat. Commun_. 9, 1203 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lajoie, M. J. _et al_. Genomically recoded organisms expand


biological functions. _Science_ 342, 357–360 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kwon, Y.-C. & Jewett, M. C. High-throughput preparation methods of crude


extract for robust cell-free protein synthesis. _Sci. Rep_. 5, 8663 (2015). Article  CAS  PubMed  Google Scholar  * Jewett, M. C. & Swartz, J. R. Mimicking the _Escherichia coli_


cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. _Biotechnol. Bioeng_. 86, 19–26 (2004). Article  CAS  PubMed  Google Scholar  * Jewett, M. C.,


Calhoun, K. A., Voloshin, A., Wuu, J. J. & Swartz, J. R. An integrated cell-free metabolic platform for protein production and synthetic biology. _Mol. Syst. Biol_. 4, 220 (2008).


Article  CAS  PubMed  Google Scholar  * Jewett, M. C. & Swartz, J. R. Rapid expression and purification of 100 nmol quantities of active protein using cell-free protein synthesis.


_Biotechnol_. _Prog_. 20, 102–109 (2004). Article  CAS  PubMed  Google Scholar  * Hong, S. H. _et al_. Cell-free protein synthesis from a release factor 1 deficient _Escherichia coli_


activates efficient and multiple site-specific nonstandard amino acid incorporation. _ACS Synth_. _Biol_. 3, 398–409 (2014). * Jian, W., Edom, R. W., Wang, D., Weng, N. & Zhang, S. W.


Relative quantitation of glycoisoforms of intact apolipoprotein C3 in human plasma by liquid chromatography-high-resolution mass spectrometry. _Anal_. _Chem_. 85, 2867–2874 (2013). Download


references ACKNOWLEDGEMENTS The authors acknowledge J.C. Stark and J. Hershewe for assistance with western blotting, helpful discussions, and sharing of reagents and ideas; S. Habibi for


assistance with LC-TOF instrumentation; and A. Karim for helpful conversations. The authors also thank J. Kath for supply of plasmids, advice on protein expression, and critical reading of


the manuscript. We also thank A. Natarajan of the Department of Microbiology at Cornell University, T. Jaroentomeechai of the Robert Frederick Smith School of Chemical and Biomolecular


Engineering at Cornell University, and J. Janetzko of the Department of Chemistry and Chemical Biology at Harvard University for sharing the ppGalNAcT, Im7, and hOGT source plasmids,


respectively. This work made use of the Integrated Molecular Structure Education and Research Center at Northwestern University, which has received support from the state of Illinois, the


Northwestern University Office of Research and the Chemistry Department for LC-TOF instrumentation. This material is based upon work supported by the Defense Threat Reduction Agency


(HDTRA1-15-10052/P00001), the David and Lucile Packard Foundation, the Dreyfus Teacher-Scholar program, and the National Science Foundation (Graduate Research Fellowship under Grant No.


DGE-1324585 and MCB-1413563). AUTHOR INFORMATION Author notes * These authors contributed equally: Weston Kightlinger, Liang Lin. AUTHORS AND AFFILIATIONS * Department of Chemical and


Biological Engineering, Northwestern University, Evanston, IL, USA Weston Kightlinger, Milan Mrksich & Michael C. Jewett * Center for Synthetic Biology, Northwestern University,


Evanston, IL, USA Weston Kightlinger, Liang Lin, Milan Mrksich & Michael C. Jewett * Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA Liang Lin, Madisen


Rosztoczy, Wenhao Li & Milan Mrksich * Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA Matthew P. DeLisa * Department of


Microbiology, Cornell University, Ithaca, NY, USA Matthew P. DeLisa * Department of Chemistry, Northwestern University, Evanston, IL, USA Milan Mrksich Authors * Weston Kightlinger View


author publications You can also search for this author inPubMed Google Scholar * Liang Lin View author publications You can also search for this author inPubMed Google Scholar * Madisen


Rosztoczy View author publications You can also search for this author inPubMed Google Scholar * Wenhao Li View author publications You can also search for this author inPubMed Google


Scholar * Matthew P. DeLisa View author publications You can also search for this author inPubMed Google Scholar * Milan Mrksich View author publications You can also search for this author


inPubMed Google Scholar * Michael C. Jewett View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS W.K. and L.L. designed, performed, and analyzed


experiments. M.R. designed and optimized experimental protocols. W.L. helped to synthesize peptide libraries. M.M. and M.C.J. directed the studies and interpreted the data. W.K., L.L.,


M.P.D., M.M., and M.C.J. conceived of the study and wrote the manuscript with assistance from M.R. and W.L. CORRESPONDING AUTHORS Correspondence to Milan Mrksich or Michael C. Jewett. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in


published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Tables 1–5, Supplementary Figures 1–27, Supplementary Note 1 REPORTING


SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kightlinger, W., Lin, L., Rosztoczy, M. _et al._ Design of glycosylation sites by rapid synthesis


and analysis of glycosyltransferases. _Nat Chem Biol_ 14, 627–635 (2018). https://doi.org/10.1038/s41589-018-0051-2 Download citation * Received: 24 October 2017 * Accepted: 07 March 2018 *


Published: 07 May 2018 * Issue Date: June 2018 * DOI: https://doi.org/10.1038/s41589-018-0051-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative