A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis

A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis

Play all audios:

Loading...

ABSTRACT The ultimate step in the formation of thebaine, a pentacyclic opiate alkaloid readily converted to the narcotic analgesics codeine and morphine in the opium poppy, has long been


presumed to be a spontaneous reaction. We have detected and purified a novel enzyme from opium poppy latex that is capable of the efficient formation of thebaine from (7_S_)-salutaridinol


7-_O_-acetate at the expense of labile hydroxylated byproducts, which are preferentially produced by spontaneous allylic elimination. Remarkably, thebaine synthase (THS), a member of the


pathogenesis-related 10 protein (PR10) superfamily, is encoded within a novel gene cluster in the opium poppy genome that also includes genes encoding the four biosynthetic enzymes


immediately upstream. THS is a missing component that is crucial to the development of fermentation-based opiate production and dramatically improves thebaine yield in engineered yeast.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54


other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and


online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS ALKALOID BINDING TO OPIUM POPPY MAJOR LATEX PROTEINS TRIGGERS STRUCTURAL MODIFICATION AND FUNCTIONAL AGGREGATION Article Open access 09 November 2022 ENGINEERING THE AMOEBA


_DICTYOSTELIUM DISCOIDEUM_ FOR BIOSYNTHESIS OF A CANNABINOID PRECURSOR AND OTHER POLYKETIDES Article 06 January 2022 BLOCKS IN THE PSEUDOURIDIMYCIN PATHWAY UNLOCK HIDDEN METABOLITES IN THE


_STREPTOMYCES_ PRODUCER STRAIN Article Open access 12 March 2021 REFERENCES * Ehrenworth, A. M. & Peralta-Yahya, P. Accelerating the semisynthesis of alkaloid-based drugs through


metabolic engineering. _Nat. Chem. Biol._ 13, 249–258 (2017). Article  CAS  PubMed  Google Scholar  * Tatsis, E. C. & O’Connor, S. E. New developments in engineering plant metabolic


pathways. _Curr. Opin. Biotechnol._ 42, 126–132 (2016). Article  CAS  PubMed  Google Scholar  * Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D.


Complete biosynthesis of opioids in yeast. _Science_ 349, 1095–1100 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Winzer, T. et al. Plant science. Morphinan biosynthesis in


opium poppy requires a P450-oxidoreductase fusion protein. _Science_ 349, 309–312 (2015). Article  CAS  PubMed  Google Scholar  * Farrow, S. C., Hagel, J. M., Beaudoin, G. A. W., Burns, D.


C. & Facchini, P. J. Stereochemical inversion of (_S_)-reticuline by a cytochrome P450 fusion in opium poppy. _Nat. Chem. Biol._ 11, 728–732 (2015). Article  CAS  PubMed  Google Scholar


  * Service, R.F. Final step in sugar-to-morphine conversion deciphered. Science https://doi.org/10.1126/science.aac6897/ (2015). * Keener, A.B. Yeast-based opioid production completed. _The


Scientist_ https://www.the-scientist.com/?articles.view/articleNo/43739/title/Yeast-Based-Opioid-Production-Completed/ (2015). * Battersby, A. R. Tilden Lecture: The biosynthesis of


alkaloids. _Proc. Chem. Soc._ 0, 189–228 (1963). Google Scholar  * Lenz, R. & Zenk, M. H. Closure of the oxide bridge in morphine biosynthesis. _Tetrahedr. Lett._ 35, 3897–3900 (1994).


Article  CAS  Google Scholar  * Lenz, R. & Zenk, M. H. Acetyl coenzyme A:salutaridinol-7-_O_-acetyltransferase from _Papaver somniferum_ plant cell cultures. The enzyme catalyzing the


formation of thebaine in morphine biosynthesis. _J. Biol. Chem._ 270, 31091–31096 (1995). Article  CAS  PubMed  Google Scholar  * Barton, D. H. R., Bhakuni, D. S., James, R. & Kirby, G.


W. Phenol oxidation and biosynthesis. Part XII. Stereochemical studies related to the biosynthesis of the morphine alkaloids. _J. Chem. Soc._ 0, 128–132 (1967). CAS  Google Scholar  *


Lotter, H., Gollwitzer, J. & Zenk, M. H. Revision of the configuration at C-7 of salutaridinol-I, the natural intermediate in morphine biosynthesis. _Tetrahedr. Lett._ 33, 2443–2446


(1992). Article  CAS  Google Scholar  * Hagel, J. M. & Facchini, P. J. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. _Plant Cell Physiol._ 54,


647–672 (2013). Article  CAS  PubMed  Google Scholar  * Ziegler, J. & Facchini, P. J. Alkaloid biosynthesis: metabolism and trafficking. _Annu. Rev. Plant Biol._ 59, 735–769 (2008).


Article  CAS  PubMed  Google Scholar  * Fisinger, U., Grobe, N. & Zenk, M. H. Thebaine synthase: a new enzyme in the morphine pathway in _Papaver somniferum_. _Nat. Prod. Commun._ 2,


249–253 (2007). CAS  Google Scholar  * Barton, D. H. R. et al. Investigations on the biosynthesis of morphine alkaloids. _J. Chem. Soc._ 65, 2423–2438 (1965). Article  CAS  PubMed  Google


Scholar  * Raith, K. et al. Electrospray tandem mass spectrometric investigations of morphinans. _J. Am. Soc. Mass Spectrom._ 14, 1262–1269 (2003). Article  CAS  PubMed  Google Scholar  *


Pennanen, K., Kotiaho, T., Huikko, K. & Kostiainen, R. Identification of ozone-oxidation products of oxycodone by electrospray ion trap mass spectrometry. _J. Mass Spectrom._ 36, 791–797


(2001). Article  CAS  PubMed  Google Scholar  * Sabarna, K. _Approaches to isolating a cDNA encoding thebaine synthase of morphine biosynthesis from opium poppy_ Papaver somniferum. PhD


thesis, Martin Luther University Halle-Wittenberg (2006). * Fernandes, H., Michalska, K., Sikorski, M. & Jaskolski, M. Structural and functional aspects of PR-10 proteins. _FEBS J._ 280,


1169–1199 (2013). Article  CAS  PubMed  Google Scholar  * Lee, E.-J. & Facchini, P. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. _Plant Cell_


22, 3489–3503 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mikkelsen, M. D. et al. Microbial production of indolylglucosinolate through engineering of a multi-gene


pathway in a versatile yeast expression platform. _Metab. Eng._ 14, 104–111 (2012). Article  CAS  PubMed  Google Scholar  * Desgagné-Penix, I., Farrow, S. C., Cram, D., Nowak, J. &


Facchini, P. J. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. _Plant Mol. Biol._ 79, 295–313 (2012). Article  CAS  PubMed  Google


Scholar  * Dang, T. T., Onoyovwi, A., Farrow, S. C. & Facchini, P. J. Biochemical genomics for gene discovery in benzylisoquinoline alkaloid biosynthesis in opium poppy and related


species. _Methods Enzymol._ 515, 231–266 (2012). Article  CAS  PubMed  Google Scholar  * Boycheva, S., Daviet, L., Wolfender, J.-L. & Fitzpatrick, T. B. The rise of operon-like gene


clusters in plants. _Trends Plant Sci._ 19, 447–459 (2014). Article  CAS  PubMed  Google Scholar  * Nützmann, H.-W. & Osbourn, A. Gene clustering in plant specialized metabolism. _Curr.


Opin. Biotechnol._ 26, 91–99 (2014). Article  CAS  PubMed  Google Scholar  * Winzer, T. et al. A _Papaver somniferum_ 10-gene cluster for synthesis of the anticancer alkaloid noscapine.


_Science_ 336, 1704–1708 (2012). Article  CAS  PubMed  Google Scholar  * Ilari, A. et al. Structural basis of enzymatic (_S_)-norcoclaurine biosynthesis. _J. Biol. Chem._ 284, 897–904


(2009). Article  CAS  PubMed  Google Scholar  * Robin, A. Y., Giustini, C., Graindorge, M., Matringe, M. & Dumas, R. Crystal structure of norcoclaurine-6-_O_-methyltransferase, a key


rate-limiting step in the synthesis of benzylisoquinoline alkaloids. _Plant J._ 87, 641–653 (2016). Article  CAS  PubMed  Google Scholar  * Löbermann, F., Mayer, P. & Trauner, D.


Biomimetic synthesis of (-)-pycnanthuquinone C through the Diels-Alder reaction of a vinyl quinone. _Angew. Chem. Int. Ed. Engl._ 49, 6199–6202 (2010). Article  CAS  PubMed  Google Scholar 


* Fossati, E., Narcross, L., Ekins, A., Falgueyret, J. P. & Martin, V. J. Synthesis of morphinan alkaloids in _Saccharomyces cerevisiae_. _PLoS One_ 10, e0124459 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Nessler, C. L., Allen, R. D. & Galewsky, S. Identification and characterization of latex-specific proteins in opium poppy. _Plant Physiol._ 79,


499–504 (1985). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bieniossek, C. et al. Automated unrestricted multigene recombineering for multiprotein complex production. _Nat.


Methods_ 6, 447–450 (2009). Article  CAS  PubMed  Google Scholar  * Farrow, S. C., Hagel, J. M. & Facchini, P. J. Transcript and metabolite profiling in cell cultures of 18 plant species


that produce benzylisoquinoline alkaloids. _Phytochemistry_ 77, 79–88 (2012). Article  CAS  PubMed  Google Scholar  * Chang, L., Hagel, J. M. & Facchini, P. J. Isolation and


characterization of _O_-methyltransferases involved in the biosynthesis of glaucine in _Glaucium flavum_. _Plant Physiol._ 169, 1127–1140 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Morris, J. S. et al. Plug-and-play benzylisoquinoline alkaloid biosynthetic gene discovery in engineered yeast. _Methods Enzymol._ 575, 143–178 (2016). Article  CAS  PubMed 


Google Scholar  * Schmidt, J., Boettcher, C., Kuhnt, C., Kutchan, T. M. & Zenk, M. H. Poppy alkaloid profiling by electrospray tandem mass spectrometry and electrospray FT-ICR mass


spectrometry after [_ring_-13C6]-tyramine feeding. _Phytochemistry_ 68, 189–202 (2007). Article  CAS  PubMed  Google Scholar  * Gambino, G., Perrone, I. & Gribaudo, I. A rapid and


effective method for RNA extraction from different tissues of grapevine and other woody plants. _Phytochem. Anal._ 19, 520–525 (2008). Article  CAS  PubMed  Google Scholar  Download


references ACKNOWLEDGEMENTS We are grateful to L. Brechenmacher and the Southern Alberta Mass Spectrometry Centre for assistance with the proteomics analysis, S. Yeaman for guidance with the


genome assembly, and T. Back for advice on chemical reaction mechanisms. We acknowledge the expert services provided by the McGill University-Genome Québec Innovation Centre with respect to


genome sequencing and preliminary assembly. We also thank A. Pigula, S. Muley, E. Eberhard, A. Kumar, K. Hetenyi, I. Esaid, H. Tang, H. Roth, M. Schmalisch, L. Hom, C. Savile, P.


Seufer-Wasserthal, T. Noh, B. Walsh, and R. J. Kirk for technical assistance and project guidance. This work was supported by Genopaver, LLC., Epimeron Inc. and funds awarded through the


Industrial Research Assistance Program (IRAP; Project 86155) operated by the National Research Council of Canada to Epimeron, Inc. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of


Biological Sciences, University of Calgary, Calgary, Canada Xue Chen, Jillian M. Hagel, Limei Chang & Peter J. Facchini * Epimeron Inc., Calgary, Canada Xue Chen, Jillian M. Hagel, 


Limei Chang, Joseph E. Tucker & Peter J. Facchini * Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada Joseph E. Tucker * Intrexon Corp., Industrial


Products Division, South San Francisco, CA, USA Stacey A. Shiigi, Yuora Yelpaala, Hsiang-Yun Chen, Rodrigo Estrada, Jeffrey Colbeck, Maria Enquist-Newman, Ana B. Ibáñez, Guillaume Cottarel 


& Genevieve M. Vidanes Authors * Xue Chen View author publications You can also search for this author inPubMed Google Scholar * Jillian M. Hagel View author publications You can also


search for this author inPubMed Google Scholar * Limei Chang View author publications You can also search for this author inPubMed Google Scholar * Joseph E. Tucker View author publications


You can also search for this author inPubMed Google Scholar * Stacey A. Shiigi View author publications You can also search for this author inPubMed Google Scholar * Yuora Yelpaala View


author publications You can also search for this author inPubMed Google Scholar * Hsiang-Yun Chen View author publications You can also search for this author inPubMed Google Scholar *


Rodrigo Estrada View author publications You can also search for this author inPubMed Google Scholar * Jeffrey Colbeck View author publications You can also search for this author inPubMed 


Google Scholar * Maria Enquist-Newman View author publications You can also search for this author inPubMed Google Scholar * Ana B. Ibáñez View author publications You can also search for


this author inPubMed Google Scholar * Guillaume Cottarel View author publications You can also search for this author inPubMed Google Scholar * Genevieve M. Vidanes View author publications


You can also search for this author inPubMed Google Scholar * Peter J. Facchini View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS X.C.,


J.M.H., J.E.T., G.C., G.M.V., and P.J.F. contributed to the project design; X.C. performed most of the enzymology, protein purification, molecular biology, gene silencing, and transcript


profiling work; J.M.H. conducted the high-resolution LC-MS analysis and proposed the reaction mechanism; L.C., S.A.S., and M.E.-N. developed testing conditions and characterized gene


candidates in yeast; R.E. and J.C. designed and built plasmids and yeast strains; Y.Y., H.-Y.C., and A.B.I. developed and performed LC-MS analysis for yeast fermentation experiments; X.C.,


J.M.H., and P.J.F. wrote the manuscript. P.J.F. supervised the project. All authors have read and approved the content of the manuscript. CORRESPONDING AUTHOR Correspondence to Peter J.


Facchini. ETHICS DECLARATIONS COMPETING INTERESTS Patent applications related to this work have been filed (PCT/CA2017/050779 and PCT/US2017/039589). ADDITIONAL INFORMATION PUBLISHER’S NOTE:


Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary


Figures 1–22, Supplementary Tables 1–8, Supplementary Note 1–3 REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chen, X., Hagel, J.M.,


Chang, L. _et al._ A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. _Nat Chem Biol_ 14, 738–743 (2018). https://doi.org/10.1038/s41589-018-0059-7 Download


citation * Received: 17 October 2017 * Accepted: 16 March 2018 * Published: 28 May 2018 * Issue Date: July 2018 * DOI: https://doi.org/10.1038/s41589-018-0059-7 SHARE THIS ARTICLE Anyone


you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative