Room temperature photo-promoted iron-catalysed arene c–h alkenylation without grignard reagents

Room temperature photo-promoted iron-catalysed arene c–h alkenylation without grignard reagents

Play all audios:

Loading...

ABSTRACT Iron is inexpensive, non-toxic and the most abundant transition metal in the Earth’s crust, rendering iron-catalysed C–H activations attractive yet particularly challenging. Despite


major advances, iron-catalysed C–H activations have been linked to high reaction temperatures or the use of reactive Grignard reagents. Here we present iron-catalysed ketimine C–H


activations at ambient reaction temperature with the help of blue light in the absence of additives, utilizing easily accessible _cis_-[Fe(H)2(dppe)2] (where dppe is


1,2-bis(diphenylphosphino)ethane) as a single component precatalyst. Mild reaction conditions, high atom economy and the lack of Grignard reagents are distinguishing features of the


iron-catalysed C–H alkenylation manifold. Detailed mechanistic investigations by deuterium labelling, isolation of organometallic intermediates and in operando light-emitting diode nuclear


magnetic resonance spectroscopy revealed the role of the light and an oxidative addition to an iron(0) complex as the modus operandi for the C–H activation. Access through your institution


Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals


Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00


per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IRON-CATALYSED


C(_SP_²)–H ACTIVATION FOR AZA-ANNULATION WITH ALKYNES ON EXTENDED _Π_-CONJUGATED SYSTEMS Article 09 July 2024 PHOTOCHEMICAL DIAZIDATION OF ALKENES ENABLED BY LIGAND-TO-METAL CHARGE TRANSFER


AND RADICAL LIGAND TRANSFER Article Open access 23 December 2022 BIFUNCTIONAL IRON-CATALYZED ALKYNE _Z_-SELECTIVE HYDROALKYLATION AND TANDEM _Z_-_E_ INVERSION VIA RADICAL MOLDING AND


FLIPPING Article Open access 04 October 2024 DATA AVAILABILITY The data supporting the findings of this study are available within the article and its Supplementary Information, or from the


authors on reasonable request. Crystal structure data have been deposited at the Cambridge Crystallographic Data Centre (CCDC nos. 2192211–2192227 and 2280102–2280104), and crystallographic


data are provided in Supplementary Information. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk. Spectroscopic and kinetic


data that support the findings of this study are freely available in Zenodo data repository, with https://doi.org/10.5281/zenodo.10138296. REFERENCES * Rogge, T. et al. C–H activation. _Nat.


Rev. Methods Prim._ 1, 1–31 (2021). Google Scholar  * Ackermann, L. Carboxylate-assisted transition metal-catalyzed C–H bond functionalizations: mechanism and scope. _Chem. Rev._ 111,


1315–1345 (2011). * Colby, D. A., Tsai, A. S., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed chelation-assisted C–H bond functionalization reactions. _Acc. Chem. Res._ 45, 814–825


(2012). * Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C–H bond activation and functionalization. _Chem. Rev._ 112, 5879–5918 (2012). CAS  Google Scholar  *


Davies, H. M. L. & Morton, D. Collective approach to advancing C–H functionalization. _ACS Cent. Sci._ 3, 936–943 (2017). CAS  PubMed Central  Google Scholar  * Gensch, T., Hopkinson, M.


N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. _Chem. Soc. Rev._ 45, 2900–2936 (2016). CAS  Google Scholar  * Park, Y., Kim, Y. &


Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. _Chem. Rev._ 117, 9247–9301 (2017). CAS  Google Scholar  * Rej, S., Ano, Y. & Chatani, N.


Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. _Chem. Rev._ 120, 1788–1887 (2020). CAS  Google Scholar  *


Sun, C.-L., Li, B.-J. & Shi, Z.-J. Direct C–H transformation via iron catalysis. _Chem. Rev._ 111, 1293–1314 (2010). Google Scholar  * Satoh, T. & Miura, M. Transition


metal-catalyzed regioselective arylation and vinylation of carboxylic acids. _Synthesis_ 2010, 3395–3409 (2010). * Manan, R. S. & Zhao, P. Merging rhodium-catalysed C–H activation and


hydroamination in a highly selective [4+2] imine/alkyne annulation. _Nat. Commun._ 7, 11506 (2016). PubMed Central  Google Scholar  * Colby, D. A., Bergman, R. G. & Ellman, J. A.


Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. _Chem. Rev._ 110, 624–655 (2010). CAS  PubMed Central  Google Scholar  * Gao, K., Lee, P.-S., Fujita, T.


& Yoshikai, N. Cobalt-catalyzed hydroarylation of alkynes through chelation-assisted C–H bond activation. _J. Am. Chem. Soc._ 132, 12249–12251 (2010). CAS  Google Scholar  * Lee, P.-S.,


Fujita, T. & Yoshikai, N. Cobalt-catalyzed room-temperature addition of aromatic imines to alkynes via directed C–H bond activation. _J. Am. Chem. Soc._ 133, 17283–17295 (2011). *


Fallon, B. J. et al. C–H activation/functionalization catalyzed by simple, well-defined low-valent cobalt complexes. _J. Am. Chem. Soc._ 137, 2448–2451 (2015). CAS  Google Scholar  *


Gandeepan, P. et al. 3_d_ transition metals for C–H activation. _Chem. Rev._ 119, 2192–2452 (2019). CAS  Google Scholar  * Yoshino, T. & Matsunaga, S. Cobalt-catalyzed C(sp3)–H


functionalization reactions. _Asian J. Org. Chem._ 7, 1193–1205 (2018). CAS  Google Scholar  * Nakao, Y. Hydroarylation of alkynes catalyzed by nickel. _Chem. Rec._ 11, 242–251 (2011). CAS 


Google Scholar  * Khake, S. M. & Chatani, N. Nickel-catalyzed C–H functionalization using a non-directed strategy. _Chem_ 6, 1056–1081 (2020). CAS  Google Scholar  * Liu, Y.-H., Xia,


Y.-N. & Shi, B.-F. Ni-catalyzed chelation-assisted direct functionalization of inert C–H bonds. _Chin. J. Chem._ 38, 635–662 (2020). CAS  Google Scholar  * Hirano, K. & Miura, M.


Recent advances in copper-mediated direct biaryl coupling. _Chem. Lett._ 44, 868–873 (2015). CAS  Google Scholar  * Shang, R., Ilies, L. & Nakamura, E. Iron-catalyzed C–H bond


activation. _Chem. Rev._ 117, 9086–9139 (2017). CAS  PubMed  Google Scholar  * Cera, G. & Ackermann, L. Iron-catalyzed C–H functionalization processes. _Top. Curr. Chem._ 374, 57 (2016).


Google Scholar  * Jia, T., Zhao, C., He, R., Chen, H. & Wang, C. Iron-carbonyl-catalyzed redox-neutral [4+2] annulation of N–H imines and internal alkynes by C–H bond activation.


_Angew. Chem. Int. Ed._ 55, 5268–5271 (2016). CAS  Google Scholar  * Kimura, N., Kochi, T. & Kakiuchi, F. Iron-catalyzed regioselective anti-Markovnikov addition of C–H bonds in aromatic


ketones to alkenes. _J. Am. Chem. Soc._ 139, 14849–14852 (2017). CAS  PubMed  Google Scholar  * Kimura, N., Kochi, T. & Kakiuchi, F. Iron‐catalyzed _ortho_‐selective C−H alkylation of


aromatic ketones with _N_‐alkenylindoles and partial indolylation via 1,4‐iron migration. _Asian J. Org. Chem._ 8, 1115–1117 (2019). CAS  Google Scholar  * Messinis, A. M., Finger, L. H.,


Hu, L. & Ackermann, L. Allenes for versatile iron-catalyzed C–H activation by weak _O_-coordination: mechanistic insights by kinetics, intermediate isolation, and computation. _J. Am.


Chem. Soc._ 142, 13102–13111 (2020). CAS  Google Scholar  * Messinis, A. M., Oliveira, J. C. A., Stückl, A. C. & Ackermann, L. Cyclometallated iron(II) alkoxides in iron-catalyzed C–H


activations by weak _O_-carbonyl chelation. _ACS Catal._ 12, 4947–4960 (2022). CAS  Google Scholar  * Kimura, N., Katta, S., Kitazawa, Y., Kochi, T. & Kakiuchi, F. Iron-catalyzed _ortho_


C–H homoallylation of aromatic ketones with methylenecyclopropanes. _J. Am. Chem. Soc._ 143, 4543–4549 (2021). CAS  Google Scholar  * Twilton, J. et al. The merger of transition metal and


photocatalysis. _Nat. Rev. Chem_. 1, 0052 (2017). * Wang, C.-S., Dixneuf, P. H. & Soulé, J.-F. Photoredox catalysis for building C–C bonds from C(sp2)–H bonds. _Chem. Rev._ 118,


7532–7585 (2018). CAS  Google Scholar  * Guillemard, L. & Wencel-Delord, J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. _Beilstein J. Org. Chem._ 16,


1754–1804 (2020). CAS  PubMed Central  Google Scholar  * Mendelsohn, L. N. et al. Visible-light-enhanced cobalt-catalyzed hydrogenation: switchable catalysis enabled by divergence between


thermal and photochemical pathways. _ACS Catal._ 11, 1351–1360 (2021). CAS  Google Scholar  * Cuthbertson, J. D. & Macmillan, D. W. C. The direct arylation of allylic sp3 C–H bonds via


organic and photoredox catalysis. _Nature_ 519, 74–77 (2015). CAS  PubMed Central  Google Scholar  * Kalyani, D., Mcmurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room temperature C–H


arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. _J. Am. Chem. Soc._ 133, 18566–18569 (2011). CAS  PubMed Central  Google Scholar  * Shaw, M. H.,


Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. _Science_ 352,


1304–1308 (2016). CAS  PubMed Central  Google Scholar  * Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. _JACS Au_ 1, 1860–1876 (2021). CAS  PubMed Central


  Google Scholar  * Stephenson, C. R. J., Yoon, T. & MacMillan, D. W. C. _Visible Light Photocatalysis in Organic Chemistry_ (Wiley, 2018). * Dombray, T. et al. Iron-catalyzed C–H


borylation of arenes. _J. Am. Chem. Soc._ 137, 4062–4065 (2015). CAS  Google Scholar  * Zhou, W. J. et al. Light runs across iron catalysts in organic transformations. _Chem. Eur. J._ 26,


15052–15064 (2020). CAS  PubMed  Google Scholar  * Bautista, M. T., Bynum, L. D. & Schauer, C. K. Synthesis of η2-dihydrogen complex,


_trans_-{Fe(η2-H2)(H)[1,2-bis(diphenylphosphino)-ethane]2}[BF4]: an experiment for an advanced inorganic chemistry laboratory involving synthesis and NMR properties of an η2-H2 complex. _J.


Chem. Educ._ 73, 988 (1996). * Azizian, H. & Morris, R. H. Photochemical synthesis and reactions of FeH(C6H4PPhCH2CH2PPh2)(PPh2PCH2CH2PPh2). _Inorg. Chem._ 22, 6–9 (1983). CAS  Google


Scholar  * Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle using in situ LED-NMR spectroscopy. _J. Am. Chem. Soc._ 140, 13843–13853 (2018). CAS  PubMed  Google Scholar 


* Hoye, T. R., Eklov, B. M., Ryba, T. D., Voloshin, M. & Yao, L. J. No-D NMR (no-deuterium proton NMR) spectroscopy: a simple yet powerful method for analyzing reaction and reagent


solutions. _Org. Lett._ 6, 953–956 (2004). CAS  PubMed  Google Scholar  * Suslick, B. A. & Tilley, T. D. Mechanistic interrogation of alkyne hydroarylations catalyzed by highly reduced


single-component cobalt complexes. _J. Am. Chem. Soc._ 142, 11203–11218 (2020). * Frohnapfel, D. S. & Templeton, J. L. Transition metal η2-vinyl complexes. _Coord. Chem. Rev._ 206–207,


199–235 (2000). * Goumans, T. P. M. et al. Photodissociation of the phosphine-substituted transition metal carbonyl complexes Cr(CO)5L and Fe(CO)4L: a theoretical study. _J. Am. Chem. Soc._


125, 3558–3567 (2003). CAS  PubMed  Google Scholar  * Salassa, L., Garino, C., Salassa, G., Gobetto, R. & Nervi, C. Mechanism of ligand photodissociation in photoactivable [Ru(bpy)2L2]2+


complexes: a density functional theory study. _J. Am. Chem. Soc._ 130, 9590–9597 (2008). CAS  PubMed  Google Scholar  * Casitas, A., Krause, H., Goddard, R. & Fürstner, A. Elementary


steps of iron catalysis: exploring the links between iron-alkyl and iron-olefin complexes for their relevance in C–H activation and C–C bond formation. _Angew. Chem. Int. Ed._ 54, 1521–1526


(2015). * Yu, C., Zhang, W.-X. & Xi, Z. Cyclobutadiene sandwich complexes of nickel and iron from cyclization of 1,3-butadiene dianions: synthesis and structural characterization.


_Organometallics_ 37, 4100–4104 (2018). CAS  Google Scholar  * Aranyos, A. et al. Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers.


_J. Am. Chem. Soc._ 121, 4369–4378 (1999). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS Generous support by the DFG (SPP 1807 Gottfried-Wilhelm-Leibniz award to L.A.), the


European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement no. 895404 to A.M.M. and ERC advanced grant agreement no. 101021358 to L.A.) and FCI


Kekulé Fellowship no. 110091 (T.v.M.) is gratefully acknowledged. We thank C. Golz (Göttingen University) for assistance with the X-ray diffraction analysis and I. Maksso for measuring


inductively coupled plasma mass spectrometry solutions. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen,


Göttingen, Germany Antonis M. Messinis, Tristan von Münchow, Max Surke & Lutz Ackermann * Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen,


Göttingen, Germany Antonis M. Messinis, Tristan von Münchow & Lutz Ackermann Authors * Antonis M. Messinis View author publications You can also search for this author inPubMed Google


Scholar * Tristan von Münchow View author publications You can also search for this author inPubMed Google Scholar * Max Surke View author publications You can also search for this author


inPubMed Google Scholar * Lutz Ackermann View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.M.M. unravelled the photo-promoted


iron-catalysed C–H activation of imines, conducted the mechanistic studies, explored the substrate scope assisted by T.v.M. and M.S., and wrote the paper with revisions provided by the other


authors. M.S. performed the Grignard studies. L.A. conceived and directed the research programme and revised the paper. CORRESPONDING AUTHOR Correspondence to Lutz Ackermann. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Catalysis_ thanks Brian Patrick and the other, anonymous, reviewer(s)


for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and


institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Figs. 1–52, Tables 1–6 and References. SUPPLEMENTARY DATA 1 CIF file of the crystal


structure of compound 4A. SUPPLEMENTARY DATA 2 CIF file of the crystal structure of compound 4B. SUPPLEMENTARY DATA 3 CIF file of the crystal structure of compound 4C. SUPPLEMENTARY DATA 4


CIF file of the crystal structure of compound 4D. SUPPLEMENTARY DATA 5 CIF file of the crystal structure of compound 4E. SUPPLEMENTARY DATA 6 CIF file of the crystal structure of compound


4F. SUPPLEMENTARY DATA 7 CIF file of the crystal structure of compound 4G. SUPPLEMENTARY DATA 8 CIF file of the crystal structure of compound 5A. SUPPLEMENTARY DATA 9 CIF file of the crystal


structure of compound 5B. SUPPLEMENTARY DATA 10 CIF file of the crystal structure of compound 5C. SUPPLEMENTARY DATA 11 CIF file of the crystal structure of compound 6A. SUPPLEMENTARY DATA


12 CIF file of the crystal structure of compound 6B. SUPPLEMENTARY DATA 13 CIF file of the crystal structure of compound 6C. SUPPLEMENTARY DATA 14 CIF file of the crystal structure of


compound 8. SUPPLEMENTARY DATA 15 CIF file of the crystal structure of compound 10A. SUPPLEMENTARY DATA 16 CIF file of the crystal structure of compound 10B. SUPPLEMENTARY DATA 17 CIF file


of the crystal structure of compound _E_-3AA. SUPPLEMENTARY DATA 18 CIF file of the crystal structure of compound _E_-3AA″. SUPPLEMENTARY DATA 19 CIF file of the crystal structure of


compound _E_-3AJ. SUPPLEMENTARY DATA 20 CIF file of the crystal structure of compound _Z_-3EA. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds


exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely


governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Messinis, A.M., von Münchow, T., Surke, M. _et al._ Room


temperature photo-promoted iron-catalysed arene C–H alkenylation without Grignard reagents. _Nat Catal_ 7, 273–284 (2024). https://doi.org/10.1038/s41929-023-01105-0 Download citation *


Received: 07 January 2023 * Accepted: 21 December 2023 * Published: 13 February 2024 * Issue Date: March 2024 * DOI: https://doi.org/10.1038/s41929-023-01105-0 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative