The emerging role of protein l-lactylation in metabolic regulation and cell signalling

The emerging role of protein l-lactylation in metabolic regulation and cell signalling

Play all audios:

Loading...

ABSTRACT l-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of l-lactate-driven protein lactylation


as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms


underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this


modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular


diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and


highlight its potential as a therapeutic target in various diseases. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time


Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PROTEIN LACTYLATION IN CANCER: MECHANISMS AND POTENTIAL THERAPEUTIC IMPLICATIONS Article Open


access 24 March 2025 LYSINE L-LACTYLATION IS THE DOMINANT LACTYLATION ISOMER INDUCED BY GLYCOLYSIS Article Open access 19 July 2024 MECHANISMS OF METABOLISM-COUPLED PROTEIN MODIFICATIONS


Article 07 January 2025 REFERENCES * Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. _J. Gen. Physiol._ 8, 519–530 (1927). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Adeva-Andany, M. et al. Comprehensive review on lactate metabolism in human health. _Mitochondrion_ 17, 76–100 (2014). Article  CAS  PubMed  Google Scholar  * Rabinowitz,


J. D. & Enerback, S. Lactate: the ugly duckling of energy metabolism. _Nat. Metab._ 2, 566–571 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brooks, G. A. et al.


Lactate in contemporary biology: a phoenix risen. _J. Physiol._ 600, 1229–1251 (2022). Article  CAS  PubMed  Google Scholar  * Certo, M. et al. Lactate modulation of immune responses in


inflammatory versus tumour microenvironments. _Nat. Rev. Immunol._ 21, 151–161 (2021). Article  CAS  PubMed  Google Scholar  * Li, X. et al. Lactate metabolism in human health and disease.


_Signal. Transduct. Target Ther._ 7, 305 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Houtkooper, R. H., Canto, C., Wanders, R. J. & Auwerx, J. The secret life of


NAD+: an old metabolite controlling new metabolic signaling pathways. _Endocr. Rev._ 31, 194–223 (2010). Article  CAS  PubMed  Google Scholar  * Ahmed, K. et al. An autocrine lactate loop


mediates insulin-dependent inhibition of lipolysis through GPR81. _Cell Metab._ 11, 311–319 (2010). Article  CAS  PubMed  Google Scholar  * Daw, C. C. et al. Lactate elicits ER-mitochondrial


Mg2+ dynamics to integrate cellular metabolism. _Cell_ 183, 474–489 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, W. et al. Lactate regulates cell cycle by


remodelling the anaphase promoting complex. _Nature_ 616, 790–797 (2023). Article  CAS  PubMed  Google Scholar  * Cai, X. et al. Lactate activates the mitochondrial electron transport chain


independently of its metabolism. _Mol. Cell_ 83, 3904–3920 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, D. et al. Metabolic regulation of gene expression by histone


lactylation. _Nature_ 574, 575–57 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ramazi, S. & Zahiri, J. Post-translational modifications in proteins: resources, tools


and prediction methods. _Database_ 2021, baab012 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr. Protein


posttranslational modifications: the chemistry of proteome diversifications. _Angew Chem. Int. Ed. Engl._ 44, 7342–7372 (2005). Article  CAS  PubMed  Google Scholar  * Su, X. Y., Wellen, K.


E. & Rabinowitz, J. D. Metabolic control of methylation and acetylation. _Curr. Opin. Chem. Biol._ 30, 52–60 (2016). Article  CAS  PubMed  Google Scholar  * Choudhary, C. et al. The


growing landscape of lysine acetylation links metabolism and cell signalling. _Nat. Rev. Mol. Cell Biol._ 15, 536–550 (2014). Article  CAS  PubMed  Google Scholar  * Sabari, B. R., Zhang,


D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. _Nat. Rev. Mol. Cell Biol._ 18, 90–101 (2017). Article  CAS  PubMed  Google Scholar  *


Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. _Nat. Rev. Genet._ 21, 737–753 (2020). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Gaffney, D. O. et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. _Cell Chem. Biol._ 27, 206–213 (2020). Article  CAS  PubMed  Google Scholar  * Ahmed, M. U.


et al. _N_-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. _Biochem. J_ 324, 565–570 (1997).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, D. et al. Lysine l-lactylation is the dominant lactylation isomer induced by glycolysis. _Nat. Chem. Biol._ 21, 91–99 (2024).


Article  PubMed  PubMed Central  Google Scholar  * Gao, J. et al. Identification of 113 new histone marks by CHiMA, a tailored database search strategy. _Sci. Adv._ 9, eadf1416 (2023).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, D. et al. Identification of lysine-lactylated substrates in gastric cancer cells. _iS__cience_ 25, 104630 (2022). CAS  Google


Scholar  * Wang, X. et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. _Genome Biol._ 24, 87 (2023). Article  PubMed 


PubMed Central  Google Scholar  * Yang, Y. H. et al. Global profiling of lysine lactylation in human lungs. _Proteomics_ 23, e2200437 (2023). Article  PubMed  Google Scholar  * Lin, Y. et


al. Multi-proteomic analysis reveals the effect of protein lactylation on matrix and cholesterol metabolism in tendinopathy. _J. Proteom. Res._ 22, 1712–1722 (2023). Article  CAS  Google


Scholar  * Yang, Z. et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. _Nat. Metab._ 5, 61–79 (2023). Article  CAS 


PubMed  Google Scholar  * Yao, Y. et al. Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion injury rats.


_Cell Mol. Neurobiol._ 43, 1989–2004 (2023). Article  CAS  PubMed  Google Scholar  * Zhang, N. et al. Protein lactylation critically regulates energy metabolism in the protozoan parasite


_Trypanosoma brucei_. _Front. Cell Dev. Biol._ 9, 719720 (2021). Article  PubMed  PubMed Central  Google Scholar  * Yin, D. et al. Protein lactylation and metabolic regulation of the


zoonotic parasite _Toxoplasma gondii_. _Genomics Proteomics Bioinformatics_ 21, 1163–1181 (2023). Article  CAS  PubMed  Google Scholar  * An, D. et al. Comprehensive analysis of lysine


lactylation in _Frankliniella occidentalis_. _Front. Genet._ 13, 1014225 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, W. et al. Systematic identification of the


lysine lactylation in the protozoan parasite _Toxoplasma gondii_. _Parasit. Vectors_ 15, 180 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Song, Y. G. et al.


Post-translational changes in lysine lactylation during prolonged presence in a patient with a related immune disorder. _Front. Immunol._ 13, 966457 (2022). * Meng, X., Baine, J. M., Yan, T.


& Wang, S. Comprehensive analysis of lysine lactylation in rice (_Oryza sativa_) grains. _J. Agric. Food Chem._ 69, 8287–8297 (2021). Article  CAS  PubMed  Google Scholar  * Wu, Q. et


al. Deciphering the atlas of post-translational modification in sugarcane. _J. Agric. Food Chem._ 71, 10004–10017 (2023). Article  CAS  PubMed  Google Scholar  * Hansen, B. K. et al.


Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. _Nat. Commun._ 10, 1055 (2019). Article  PubMed  PubMed Central  Google Scholar  * Olsen,


J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. _Sci. Signal_ 3, ra3 (2010). Article  PubMed  Google Scholar  * Prus, G. et


al. Global, site-resolved analysis of ubiquitylation occupancy and turnover rate reveals systems properties. _Cell_ 187, 2875–2892 (2024). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Allis, C. D. et al. New nomenclature for chromatin-modifying enzymes. _Cell_ 131, 633–636 (2007). Article  CAS  PubMed  Google Scholar  * Wang, N. et al. Histone lactylation


boosts reparative gene activation post-myocardial infarction. _Circ. Res._ 131, 893–908 (2022). Article  CAS  PubMed  Google Scholar  * Zhu, R. et al. ACSS2 acts as a lactyl-CoA synthetase


and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. _Cell Metab._ 37, 361–376 (2024). Article  PubMed  Google Scholar  * Chen, Y. et al.


Metabolic regulation of homologous recombination repair by MRE11 lactylation. _Cell_ 187, 294–311 (2024). Article  CAS  PubMed  Google Scholar  * Chen, H. X. et al. NBS1 lactylation is


required for efficient DNA repair and chemotherapy resistance. _Nature_ 631, 663–669 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Niu, Z. et al. HBO1 catalyzes lysine


lactylation and mediates histone H3K9la to regulate gene transcription. _Nat. Commun._ 15, 3561 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xie, B. et al. KAT8-catalyzed


lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. _Proc. Natl Acad. Sci. USA_ 121, e2314128121 (2024). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wang, Y. G. et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. _Nature_ 552, 273–27 (2017). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Liu, R. et al. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. _Cell Metab._ 37, 377–394 (2024). Article  PubMed  Google


Scholar  * Ibba, M. & Soll, D. Aminoacyl-tRNA synthesis. _Annu. Rev. Biochem._ 69, 617–650 (2000). Article  CAS  PubMed  Google Scholar  * Mao, Y. et al. Hypoxia induces mitochondrial


protein lactylation to limit oxidative phosphorylation. _Cell Res._ 34, 13–30 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ju, J. Y. et al. The alanyl-tRNA synthetase


AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. _J. Clin. Invest._ 134, e174587 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zong, Z.


et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. _Cell_ 187, 2375–2392 (2024). Article  CAS  PubMed 


Google Scholar  * Sun, L. H. et al. Lactylation of METTL16 promotes cuproptosis via m6A-modification on _FDX1_ mRNA in gastric cancer. _Nat. Commun._ 14, 6523 (2023). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Li, H. et al. AARS1 and AARS2 sense l-lactate to regulate cGAS as global lysine lactyltransferases. _Nature_. 634 1229–1237 (2024). Article  CAS  PubMed 


Google Scholar  * Seto, E. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. _Cold Spring Harb. Perspect. Biol._ 6, a018713 (2014). Article  PubMed  PubMed


Central  Google Scholar  * Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. _Proc. Natl Acad. Sci. USA_ 104, 17335–17340 (2007). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Du, J. T. et al. Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase. _Science_ 334, 806–809 (2011). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. _Mol. Cell Proteomics_ 10, M111.012658 (2011). *


Tan, M. J. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. _Cell Metab._ 19, 605–617 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Kutil, Z. et al. Histone deacetylase 11 is a fatty-acid deacylase. _ACS Chem. Biol._ 13, 685–693 (2018). Article  CAS  PubMed  Google Scholar  * Moreno-Yruela, C., Galleano, I., Madsen,


A. S. & Olsen, C. A. Histone deacetylase 11 is an ε-_N-_myristoyllysine hydrolase. _Cell Chem. Biol._ 25, 849–84 (2018). Article  CAS  PubMed  Google Scholar  * Madsen, A. S. &


Olsen, C. A. Profiling of substrates for zinc-dependent lysine deacylase enzymes: HDAC3 exhibits decrotonylase activity in vitro. _Angew. Chem. Int. Ed. Engl._ 51, 9083–9087 (2012). Article


  CAS  PubMed  Google Scholar  * Wei, W. et al. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in


transcription. _Cell Res._ 27, 898–915 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huang, H. et al. The regulatory enzymes and protein substrates for the lysine


beta-hydroxybutyrylation pathway. _Sci. Adv._ 7, eabe2771 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moreno-Yruela, C. et al. Class I histone deacetylases (HDAC1-3) are


histone lysine delactylases. _Sci. Adv._ 8, eabi6696 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zessin, M. et al. Uncovering robust delactoylase and depyruvoylase


activities of HDAC isoforms. _ACS Chem. Biol._ 17, 1364–1375 (2022). Article  CAS  PubMed  Google Scholar  * Wang, Z. A. et al. Histone H2B deacylation selectivity: exploring chromatin’s


dark matter with an engineered Sortase. _J. Am. Chem. Soc._ 144, 3360–3364 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Du, R. et al. Sirtuin 1/sirtuin 3 are robust lysine


delactylases and sirtuin 1-mediated delactylation regulates glycolysis. _iScience_ 27, 110911 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jin, J. et al. SIRT3-dependent


delactylation of cyclin E2 prevents hepatocellular carcinoma growth. _EMBO Rep._ 24, e56052 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fan, Z. M. et al. Identification


of SIRT3 as an eraser of H4K16la. _iScience_ 26, 107757 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yun, M., Wu, J., Workman, J. L. & Li, B. Readers of histone


modifications. _Cell Res._ 21, 564–578 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Andrews, F. H., Strahl, B. D. & Kutateladze, T. G. Insights into newly discovered


marks and readers of epigenetic information. _Nat. Chem. Biol._ 12, 662–668 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dhalluin, C. et al. Structure and ligand of a


histone acetyltransferase bromodomain. _Nature_ 399, 491–496 (1999). Article  CAS  PubMed  Google Scholar  * Nunez, R. et al. The TRIM33 bromodomain recognizes histone lysine lactylation.


_ACS Chem. Biol._ 19, 2418–2428 (2024). Article  CAS  PubMed  Google Scholar  * Ferri, F. et al. TRIM33 switches off _Ifnb1_ gene transcription during the late phase of macrophage


activation. _Nat. Commun._ 6, 8900 (2015). Article  CAS  PubMed  Google Scholar  * Palsson-McDermott, E. M. & O’Neill, L. A. J. The Warburg effect then and now: from cancer to


inflammatory diseases. _Bioessays_ 35, 965–973 (2013). Article  CAS  PubMed  Google Scholar  * Phillips, D. M. The presence of acetyl groups of histones. _Biochem. J_ 87, 258–263 (1963).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of


RNA synthesis. _Proc. Natl Acad. Sci. USA_ 51, 786–794 (1964). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guarente, L. The logic linking protein acetylation and metabolism.


_Cell Metab._ 14, 151–153 (2011). Article  CAS  PubMed  Google Scholar  * Bose, S., Ramesh, V. & Locasale, J. W. Acetate metabolism in physiology, cancer, and beyond. _Trends Cell Biol._


29, 695–703 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guertin, D. A. & Wellen, K. E. Acetyl-CoA metabolism in cancer. _Nat. Rev. Cancer_ 23, 156–172 (2023).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. _Cell Res._ 25, 771–784


(2015). Article  PubMed  PubMed Central  Google Scholar  * Sung, E. et al. Global profiling of lysine acetylation and lactylation in Kupffer cells. _J. Proteome Res._ 22, 3683–3691 (2023).


Article  CAS  PubMed  Google Scholar  * Sun, S. et al. Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed alpha-tubulin lactylation. _Nat. Commun._ 15, 8377 (2024). Article 


PubMed  PubMed Central  Google Scholar  * Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. _Mol._ _Cell_ 71, 398–408 (2018). CAS  Google Scholar  * Wellen,


K. E. & Thompson, C. B. A two-way street: reciprocal regulation of metabolism and signalling. _Nat. Rev. Mol. Cell Biol._ 13, 270–276 (2012). Article  CAS  PubMed  Google Scholar  *


Hagihara, H. et al. Protein lactylation induced by neural excitation. _Cell Rep._ 37, 109820 (2021). Article  CAS  PubMed  Google Scholar  * Wright, W. D., Shah, S. S. & Heyer, W. D.


Homologous recombination and the repair of DNA double-strand breaks. _J. Biol. Chem._ 293, 10524–10535 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, G. et al.


Glycometabolic reprogramming-induced XRCC1 lactylation confers therapeutic resistance in ALDH1A3-overexpressing glioblastoma. _Cell Metab._ 36, 1696–1710 (2024). Article  CAS  PubMed  Google


Scholar  * Wan, N. et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. _Nat. Methods_ 19, 854–864 (2022). Article  CAS  PubMed  Google Scholar 


* Meng, Q. et al. Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. _Redox. Biol._ 71, 103108


(2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jia, M. et al. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. _Sci. Adv._ 9,


eadg4993 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Folmes, C. D. & Terzic, A. Metabolic determinants of embryonic development and stem cell fate. _Reprod. Fertil.


Dev._ 27, 82–88 (2014). Article  PubMed  PubMed Central  Google Scholar  * Ryall, J. G., Cliff, T., Dalton, S. & Sartorelli, V. Metabolic reprogramming of stem cell epigenetics. _Cell


Stem Cell_ 17, 651–662 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. _Nat.


Rev. Mol. Cell Biol._ 15, 243–256 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gatie, M. I. et al. Lactate enhances mouse ES cell differentiation toward XEN cells in


vitro. _Stem Cells_ 40, 239–259 (2022). Article  PubMed  Google Scholar  * Dong, Q. et al. Glycolysis-stimulated Esrrb lactylation promotes the self-renewal and extraembryonic endoderm stem


cell differentiation of embryonic stem cells. _Int. J. Mol. Sci._ 25, 2692 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Panopoulos, A. D. et al. The metabolome of induced


pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. _Cell Res._ 22, 168–177 (2012). Article  CAS  PubMed  Google Scholar  * Folmes, C. D. L. et al.


Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. _Cell Metab._ 14, 264–271 (2011). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Li, L. et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. _Nat. Metab._ 2, 882–892 (2020). Article  CAS  PubMed


  Google Scholar  * Hu, X. L. et al. Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. _Nucleic Acids Res._ 52,


5529–5548 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. _Nat. Rev. Genet._ 20, 221–234


(2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, J. et al. Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. _Natl Sci. Rev._ 11, nwad295


(2024). Article  CAS  PubMed  Google Scholar  * Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos.


_Dev. Cell_ 40, 342–353 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bhattacharya, D., Azambuja, A. P. & Simoes-Costa, M. Metabolic reprogramming promotes neural crest


migration via Yap/Tead signaling. _Dev. Cell_ 53, 199–211 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Merkuri, F., Rothstein, M. & Simoes-Costa, M. Histone


lactylation couples cellular metabolism with developmental gene regulatory networks. _Nat. Commun._ 15, 90 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Govindarajan, G. et


al. The cardiometabolic syndrome as a cardiovascular risk factor. _Am. J. Med. Sci._ 330, 311–318 (2005). Article  PubMed  Google Scholar  * Zhu, W. et al. Lactate and lactylation in


cardiovascular diseases: current progress and future perspectives. _Metabolism_ 158, 155957 (2024). Article  CAS  PubMed  Google Scholar  * Murashige, D. et al. Comprehensive quantification


of fuel use by the failing and nonfailing human heart. _Science_ 370, 364–368 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, N. et al. Alpha-myosin heavy chain


lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. _Cell Res._ 33, 679–698 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar


  * De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. _Cell_ 154, 651–663 (2013). Article  PubMed  Google Scholar  * Li, Y., Lui, K. O. & Zhou, B. Reassessing


endothelial-to-mesenchymal transition in cardiovascular diseases. _Nat. Rev. Cardiol._ 15, 445–456 (2018). Article  PubMed  Google Scholar  * Fan, M. et al. Lactate promotes


endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. _Sci. Adv._ 9, eadc9465 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hanahan, D.


& Weinberg, R. A. Hallmarks of cancer: the next generation. _Cell_ 144, 646–674 (2011). Article  CAS  PubMed  Google Scholar  * Warburg, O. On the origin of cancer cells. _Science_ 123,


309–314 (1956). Article  CAS  PubMed  Google Scholar  * Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell


proliferation. _Science_ 324, 1029–1033 (2009). Article  Google Scholar  * Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? _Trends Biochem. Sci._


41, 211–218 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Noman, M. Z. et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses


to hypoxia. _Am. J. Physiol. Cell Physiol._ 309, C569–C579 (2015). Article  PubMed  PubMed Central  Google Scholar  * Chu, Y. D. et al. Aldolase B-driven lactagenesis and CEACAM6 activation


promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. _Cell Death Dis._ 14, 660 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, J.


et al. GPR37 promotes colorectal cancer liver metastases by enhancing the glycolysis and histone lactylation via Hippo pathway. _Oncogene_ 42, 3319–3330 (2023). Article  CAS  PubMed  Google


Scholar  * Li, W. H. et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18


lactylation (H3K18la) in colorectal cancer. _Autophagy_ 20, 114–130 (2024). Article  CAS  PubMed  Google Scholar  * Sun, X. et al. The diapause-like colorectal cancer cells induced by SMC4


attenuation are characterized by low proliferation and chemotherapy insensitivity. _Cell Metab._ 35, 1563–1579 (2023). Article  CAS  PubMed  Google Scholar  * Yue, Q. et al. Histone H3K9


lactylation confers temozolomide resistance in glioblastoma via LUC7L2-mediated MLH1 intron retention. _Adv. Sci._ 11, e2309290 (2024). Article  Google Scholar  * Yang, L. et al. Nucleolin


lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. _J. Hepatol._ 81, 651–666 (2024). Article  CAS  PubMed  Google Scholar  * Qiao,


Z. et al. Hypoxia-induced SHMT2 protein lactylation facilitates glycolysis and stemness of esophageal cancer cells. _Mol. Cell. Biochem._ 479, 3063–3076 (2024). Article  CAS  PubMed  Google


Scholar  * Yu, J. et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. _Genome Biol._ 22, 85 (2021). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Gu, X. et al. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A


demethylation of SP100A. _Nucleic Acids Res._ 52, 2273–2289 (2024). Article  CAS  PubMed  Google Scholar  * Pandkar, M. R., Sinha, S., Samaiya, A. & Shukla, S. Oncometabolite lactate


enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression. _Transl. Oncol._ 37, 101758 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Xie, B. et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. _Mol. Cancer_ 22, 151 (2023). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. _Cell Metab._ 24, 657–671 (2016).


Article  CAS  PubMed  Google Scholar  * Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. _Nature_ 591, 645–651 (2021). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. _Cell Metab._ 25, 1282–1293 (2017). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Gottfried, E. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. _Blood_ 107, 2013–2021 (2006).


Article  CAS  PubMed  Google Scholar  * Puig-Kroger, A. et al. Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of


lactate and glucose-degradation products. _J. Leukoc. Biol._ 73, 482–492 (2003). Article  CAS  PubMed  Google Scholar  * Colegio, O. R. et al. Functional polarization of tumour-associated


macrophages by tumour-derived lactic acid. _Nature_ 513, 559–563 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, C. et al. Mutant KRAS-activated _circATXN7_ fosters


tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death. _Nat. Commun._ 15, 499 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gu, J. et


al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. _Cell Rep._ 40, 111122 (2022). Article  CAS 


PubMed  Google Scholar  * De Leo, A. et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. _Immunity_ 57,


1105–1123 (2024). Article  PubMed  Google Scholar  * Xiong, J. et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid


cells. _Mol. Cell_ 82, 1660–1677 (2022). Article  CAS  PubMed  Google Scholar  * Weil, M. H. & Afifi, A. A. Experimental and clinical studies on lactate and pyruvate as indicators of the


severity of acute circulatory failure (shock). _Circulation_ 41, 989–1001 (1970). Article  CAS  PubMed  Google Scholar  * Singer, M. et al. The Third International Consensus Definitions for


Sepsis and Septic Shock (Sepsis-3). _JAMA_ 315, 801–810 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, T. et al. Lactate’s impact on immune cells in sepsis:


unraveling the complex interplay. _Front. Immunol._ 15, 1483400 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, H. C. et al. HMG-1 as a late mediator of endotoxin


lethality in mice. _Science_ 285, 248–251 (1999). Article  CAS  PubMed  Google Scholar  * Yang, K. et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in


polymicrobial sepsis. _Cell Death Differ._ 29, 133–146 (2022). Article  CAS  PubMed  Google Scholar  * Lelubre, C. & Vincent, J. L. Mechanisms and treatment of organ failure in sepsis.


_Nat. Rev. Nephrol._ 14, 417–427 (2018). Article  PubMed  Google Scholar  * An, S. et al. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury


via Fis1 lactylation. _Cell Death Dis._ 14, 457 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, D. et al. Histone lactylation-regulated METTL3 promotes ferroptosis via


m6A-modification on ACSL4 in sepsis-associated lung injury. _Redox. Biol._ 74, 103194 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lood, C. et al. Neutrophil extracellular


traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. _Nat. Med._ 22, 146–153 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Caielli, S. et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. _Cell_ 184, 4464–4479 (2021). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zhang, J. et al. Mitochondrial DNA programs lactylation of cGAS to induce IFN responses in patients with systemic lupus erythematosus. _J. immunol._ 213, 795–807 (2024). Article 


CAS  PubMed  Google Scholar  * Knochelmann, H. M. et al. When worlds collide: TH17 and Treg cells in cancer and autoimmunity. _Cell. Mol. Immunol._ 15, 458–469 (2018). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Fan, W. et al. Global lactylome reveals lactylation-dependent mechanisms underlying TH17 differentiation in experimental autoimmune uveitis. _Sci. Adv._ 9,


eadh4655 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation


in Alzheimer’s disease. _Cell Metab._ 34, 634–63 (2022). Article  CAS  PubMed  Google Scholar  * Lin, X. et al. Augmentation of scleral glycolysis promotes myopia through histone


lactylation. _Cell Metab._ 36, 511–525 (2024). Article  CAS  PubMed  Google Scholar  * Wang, P. et al. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary


fibrosis via YTHDF1/m6A/NREP. _J. Hazard. Mater._ 461, 132582 (2024). Article  CAS  PubMed  Google Scholar  * Wang, Y. et al. The glycolytic enzyme PFKFB3 drives kidney fibrosis through


promoting histone lactylation-mediated NF-κB family activation. _Kidney Int._ 106, 226–240 (2024). Article  CAS  PubMed  Google Scholar  * Rho, H., Terry, A. R., Chronis, C. & Hay, N.


Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. _Cell Metab._ 35, 1406–1423 (2023). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Varner, E. L. et al. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. _Open Biol._ 10,


200187 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, H., Sun, L., Gao, P. & Hu, H. Lactylation in cancer: current understanding and challenges. _Cancer Cell_ 42,


1803–1807 (2024). Article  CAS  PubMed  Google Scholar  * Patel, S. S. & Walt, D. R. Substrate specificity of acetyl coenzyme A synthetase. _J. Biol. Chem._ 262, 7132–7134 (1987).


Article  CAS  PubMed  Google Scholar  * Watkins, P. A., Maiguel, D., Jia, Z. & Pevsner, J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. _J. Lipid Res._


48, 2736–2750 (2007). Article  CAS  PubMed  Google Scholar  * McElroy, W. D., DeLuca, M. & Travis, J. Molecular uniformity in biological catalyses. The enzymes concerned with firefly


luciferin, amino acid, and fatty acid utilization are compared. _Science_ 157, 150–160 (1967). Article  CAS  PubMed  Google Scholar  * Gulick, A. M. Conformational dynamics in the Acyl-CoA


synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. _ACS Chem. Biol._ 4, 811–827 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Schmelz, S. & Naismith, J. H. Adenylate-forming enzymes. _Curr. Opin. Struct. Biol._ 19, 666–671 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jakubowski, H.


Aminoacylation of coenzyme A and pantetheine by aminoacyl-tRNA synthetases: possible link between noncoded and coded peptide synthesis. _Biochemistry_ 37, 5147–5153 (1998). Article  CAS 


PubMed  Google Scholar  * Dong, H. et al. YiaC and CobB regulate lysine lactylation in _Escherichia coli_. _Nat. Commun._ 13, 6628 (2022). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zhang, X. et al. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. _J. Ind. Microbiol. Biotechnol._ 46, 899–909 (2019).


Article  CAS  PubMed  Google Scholar  * Li, X. et al. TRAP1 drives smooth muscle cell senescence and promotes atherosclerosis via HDAC3-primed histone H4 lysine 12 lactylation. _Eur. Heart


J._ 45, 4219–4235 (2024). Article  CAS  PubMed  Google Scholar  * Xu, X. et al. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and


pyroptosis in neointimal hyperplasia. _Cell Rep._ 42, 112869 (2023). Article  CAS  PubMed  Google Scholar  * Dong, M. et al. ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation


promotes atherosclerosis by regulating EndMT. _Acta Pharm. Sin. B_ 14, 3027–3048 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, Y. et al. Exercise-induced endothelial


Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway. _Atherosclerosis_ 375, 45–58 (2023). Article  CAS  PubMed  Google Scholar  * Chen, X. et al. High-intensity


interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis. _BMC Biol._ 21, 196 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ma, W. et al.


Orphan nuclear receptor NR4A3 promotes vascular calcification via histone lactylation. _Circ. Res._ 134, 1427–1447 (2024). Article  CAS  PubMed  Google Scholar  * Wang, C. et al.


Andrographolide regulates H3 histone lactylation by interfering with p300 to alleviate aortic valve calcification. _Br. J. Pharmacol._ 181, 1843–1856 (2024). Article  CAS  PubMed  Google


Scholar  * Chen, B. et al. Metabolic recoding of NSUN2-mediated m5C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m5C-ENO1 positive feedback loop. _Adv.


Sci._11, e2309840 (2024). Article  Google Scholar  * Wang, J. W. et al. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and


migration. _Front. Cell. Infect. Microbiol._ 12, 913815 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Miao, Z., Zhao, X. & Liu, X. Hypoxia induced beta-catenin


lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway. _Exp. Cell. Res._ 422, 113439 (2023). Article  CAS  PubMed  Google Scholar  *


Liao, J. Y. et al. CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1. _Int. J. Biol. Sci._ 19, 5218–5232 (2023).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, F. et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in


bladder cancer. _Drug Resist. Updat._ 73, 101059 (2024). Article  CAS  PubMed  Google Scholar  * Meng, Q. F. et al. Lactylation stabilizes DCBLD1 activating the pentose phosphate pathway to


promote cervical cancer progression. _J. Exp. Clin. Cancer Res._ 43, 36 (2024). Article  CAS  PubMed  PubMed Central  Google Scholar  * Qiao, J. et al. Histone H3K18 and Ezrin lactylation


promote renal dysfunction in sepsis-associated acute kidney injury. _Adv. Sci._ 11, e2307216 (2024). Article  Google Scholar  * Huang, J. et al. YY1 lactylation aggravates autoimmune uveitis


by enhancing microglial functions via inflammatory genes. _Adv. Sci._ 11, e2308031 (2024). Article  Google Scholar  * Wei, L. et al. H3K18 lactylation of senescent microglia potentiates


brain aging and Alzheimer’s disease through the NFκB signaling pathway. _J. Neuroinflammation_ 20, 208 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hay, N. Reprogramming


glucose metabolism in cancer: can it be exploited for cancer therapy? _Nat. Rev. Cancer_ 16, 635–649 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Martinez-Outschoorn, U.


E. et al. Cancer metabolism: a therapeutic perspective. _Nat. Rev. Clin. Oncol._ 14, 113 (2017). Article  PubMed  Google Scholar  * Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C.


V. Targeting cancer metabolism in the era of precision oncology. _Nat. Rev. Drug Discov._ 21, 141–162 (2022). Article  CAS  PubMed  Google Scholar  * Lasko, L. M. et al. Discovery of a


selective catalytic p300/CBP inhibitor that targets lineage specific tumours. _Nature_ 550, 128–132 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Topper, M. J. et al. The


emerging role of epigenetic therapeutics in immuno-oncology. _Nat. Rev. Clin. Oncol._ 17, 75–90 (2020). Article  PubMed  Google Scholar  * Caruso, J. et al. Ergogenic effects of β-alanine


and carnosine: proposed future research to quantify their efficacy. _Nutrients_ 4, 585–601 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhu, F. Y. et al. Inhibiting bridge


integrator 2 phosphorylation leads to improved oocyte quality, ovarian health and fertility in aging and after chemotherapy in mice. _Nat. Aging_ 1, 1010–1023 (2021). Article  PubMed 


Google Scholar  * Yao, H. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. _Nat. Biomed. Eng._ 3, 306–317 (2019). Article  CAS  PubMed  Google Scholar


  * Perez-Salvia, M. & Esteller, M. Bromodomain inhibitors and cancer therapy: from structures to applications. _Epigenetics_ 12, 323–339 (2017). Article  PubMed  Google Scholar  * Li,


X., Liu, S., Li, X. & Li, X. D. YEATS domains as novel epigenetic readers: structures, functions, and inhibitor development. _ACS Chem. Biol._ 18, 994–1013 (2022). Article  PubMed 


Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (32270822), the Peking-Tsinghua Center for Life Science, the


State Key Laboratory of Gene Function and Modulation Research, the School of Life Sciences at Peking University, the Qidong-SLS Innovation Fund and the Clinical Medicine Plus X-Young


Scholars Project at Peking University (PKU2024LCXQ025), the Fundamental Research Funds for the Central Universities to D.Z. We were grateful to the members of the Zhang lab for their


assistance in proofreading the manuscript. We sincerely apologize to researchers whose important contributions could not be cited owing to space limitations. All figures were created using


BioRender.com. AUTHOR INFORMATION Author notes * Yuwei Tang Present address: Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA AUTHORS


AND AFFILIATIONS * State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China Haowen Ren, Yuwei Tang & Di Zhang *


Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China Di Zhang Authors * Haowen Ren View author publications You can


also search for this author inPubMed Google Scholar * Yuwei Tang View author publications You can also search for this author inPubMed Google Scholar * Di Zhang View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS H.R. constructed the figures. D.Z. conceived the manuscript and D.Z., H.R. and Y.T. jointly wrote the manuscript.


CORRESPONDING AUTHOR Correspondence to Di Zhang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Metabolism_


thanks Long Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Yanina-Yasmin Pesch, in collaboration with the


_Nature Metabolism_ team. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other


rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ren, H., Tang, Y. & Zhang, D. The emerging role of protein l-lactylation in metabolic regulation and cell signalling. _Nat Metab_ 7,


647–664 (2025). https://doi.org/10.1038/s42255-025-01259-0 Download citation * Received: 14 August 2024 * Accepted: 03 March 2025 * Published: 02 April 2025 * Issue Date: April 2025 * DOI:


https://doi.org/10.1038/s42255-025-01259-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative