Play all audios:
ABSTRACT Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful tool for structural and functional imaging of materials on the atomic level. Driven by advances
in aberration correction, STEM now allows the routine imaging of structures with single-digit picometre-level precision for localization of atomic units. This Primer focuses on the
opportunities emerging at the interface between STEM and machine learning (ML) methods. We review the primary STEM imaging methods, including structural imaging, electron energy loss
spectroscopy and its momentum-resolved modalities and 4D-STEM. We discuss the quantification of STEM structural data as a necessary step towards meaningful ML applications and its analysis
in terms of the relevant physics and chemistry. We show examples of the opportunities offered by structural STEM imaging in elucidating the chemistry and physics of complex materials and how
the latter connect to first-principles and phase-field models to yield consistent interpretation of generative physics. We present the critical infrastructural needs for the broad adoption
of ML methods in the STEM community, including the storage of data and metadata to allow the reproduction of experiments. Finally, we discuss the application of ML to automating experiments
and novel scanning modes. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your
institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal
Receive 1 digital issues and online access to articles $119.00 per year only $119.00 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy
now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact
customer support SIMILAR CONTENT BEING VIEWED BY OTHERS UNSUPERVISED DEEP DENOISING FOR FOUR-DIMENSIONAL SCANNING TRANSMISSION ELECTRON MICROSCOPY Article Open access 13 October 2024 ATOMAI
FRAMEWORK FOR DEEP LEARNING ANALYSIS OF IMAGE AND SPECTROSCOPY DATA IN ELECTRON AND SCANNING PROBE MICROSCOPY Article 08 December 2022 UNCOVERING MATERIAL DEFORMATIONS VIA MACHINE LEARNING
COMBINED WITH FOUR-DIMENSIONAL SCANNING TRANSMISSION ELECTRON MICROSCOPY Article Open access 18 May 2022 REFERENCES * Keyse, R. J., Garratt-Reed, A. J., Goodhew, P. J. & Lorimer, G. W.
_Introduction to Scanning Transmission Electron Microscopy_ (Routledge, 2018). * Shibata, N. et al. Electric field imaging of single atoms. _Nat. Commun._ 8, 15631 (2017). Article ADS
Google Scholar * Campanini, M., Nasi, L., Albertini, F. & Erni, R. Disentangling nanoscale electric and magnetic fields by time-reversal operation in differential phase-contrast STEM.
_Appl. Phys. Lett._ 117, 154102 (2020). Article ADS Google Scholar * Müller, K. et al. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. _Nat.
Commun._ 5, 5653 (2014). Article ADS Google Scholar * Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the information limit in transmission electron-microscopy.
_Nature_ 374, 630–632 (1995). Article ADS Google Scholar * Hwang, J., Zhang, J. Y., D’Alfonso, A. J., Allen, L. J. & Stemmer, S. Three-dimensional imaging of individual dopant atoms
in SrTiO3. _Phys. Rev. Lett._ 111, 266101 (2013). Article ADS Google Scholar * Xin, H. L. & Muller, D. A. Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D
imaging in S/TEM. _J. Electron. Microsc._ 58, 157–165 (2009). Article Google Scholar * Benthem, K. V. et al. Three-dimensional imaging of individual hafnium atoms inside a semiconductor
device. _Appl. Phys. Lett._ 87, 034104 (2005). Article ADS Google Scholar * Borisevich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning
transmission electron microscope. _Proc. Natl Acad. Sci. USA_ 103, 3044–3048 (2006). Article ADS Google Scholar * Nellist, P. D. & Wang, P. Optical sectioning and confocal imaging
and analysis in the transmission electron microscope. _Annu. Rev. Mater. Res._ 42, 125–143 (2012). Article ADS Google Scholar * Wang, P. et al. Bright-field scanning confocal electron
microscopy using a double aberration-corrected transmission electron microscope. _Ultramicroscopy_ 111, 877–886 (2011). Article Google Scholar * Ishikawa, R. et al. Single atom visibility
in STEM optical depth sectioning. _Appl. Phys. Lett._ 109, 163102 (2016). Article ADS Google Scholar * Levin, B. D. A. et al. Nanomaterial datasets to advance tomography in scanning
transmission electron microscopy. _Sci. Data_ 3, 160041 (2016). Article Google Scholar * Alania, M. et al. Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D
atomic structure. _Ultramicroscopy_ 177, 36–42 (2017). Article Google Scholar * Dahmen, T. et al. Combined scanning transmission electron microscopy tilt- and focal series. _Microsc.
Microanal._ 20, 548–560 (2014). Article ADS Google Scholar * Hovden, R. et al. Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field
3D reconstructions. _Ultramicroscopy_ 140, 26–31 (2014). Article Google Scholar * Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. _Nature_ 514, 209–212 (2014).
Article ADS Google Scholar * Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. _Phys. Rev. Lett._ 120, 095901 (2018).
Article ADS Google Scholar * Bonnet, N. Multivariate statistical methods for the analysis of microscope image series: applications in materials science. _J. Microscopy_ 190, 2–18 (1998).
Article Google Scholar * Trebbia, P. & Bonnet, N. EELS elemental mapping with unconventional methods I. Theoretical basis: image analysis with multivariate statistics and entropy
concepts. _Ultramicroscopy_ 34, 165–178 (1990). Article Google Scholar * Trebbia, P. & Mory, C. EELS elemental mapping with unconventional methods II. Applications to biological
specimens. _Ultramicroscopy_ 34, 179–203 (1990). Article Google Scholar * Dan, J., Zhao, X. & Pennycook, S. J. A machine perspective of atomic defects in scanning transmission electron
microscopy. _InfoMat_ 1, 359–375 (2019). Article Google Scholar * Maksov, A. et al. Deep learning analysis of defect and phase evolution during electron beam-induced transformations in
WS2. _npj Comput. Mater._ 5, 12 (2019). Article ADS Google Scholar * Roccapriore, K. M., Kalinin, S. V. & Ziatdinov, M. Physics discovery in nanoplasmonic systems via autonomous
experiments in scanning transmission electron microscopy. Preprint at https://arxiv.org/abs/2108.03290 (2021). * Susi, T. et al. Towards atomically precise manipulation of 2D nanostructures
in the electron microscope. _2D Mater._ 4, 042004 (2017). Article Google Scholar * Dyck, O., Kim, S., Kalinin, S. V. & Jesse, S. Placing single atoms in graphene with a scanning
transmission electron microscope. _Appl. Phys. Lett._ 111, 113104 (2017). Article ADS Google Scholar * Dyck, O. et al. Electron-beam introduction of heteroatomic Pt–Si structures in
graphene. _Carbon_ 161, 750–757 (2020). Article Google Scholar * Oxley, M. P., Lupini, A. R. & Pennycook, S. J. Ultra-high resolution electron microscopy. _Rep. Prog. Phys._ 80, 026101
(2016). Article ADS Google Scholar * Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution.
_Science_ 329, 1628–1630 (2010). Article ADS Google Scholar * Giessibl, F. J. AFM’s path to atomic resolution. _Mater. Today_ 8, 32–41 (2005). Article Google Scholar * Park, J. Y.,
Maier, S., Hendriksen, B. & Salmeron, M. Sensing current and forces with SPM. _Mater. Today_ 13, 38–45 (2010). Article Google Scholar * Abbe, E. Beiträge zur Theorie des Mikroskops und
der mikroskopischen Wahrnehmung. _Arch. Mikrosk. Anat._ 9, 413–468 (1873). Article Google Scholar * Scherzer, O. Uber einige Fehler von Elektonenlinsen. _Zeit. Phys._ 101, 593–603 (1936).
Article ADS MATH Google Scholar * Hawkes, P. W. in _Scienc_e _of Microscopy_ (eds Hawkes, P. W. & Spence, J. C.) 696–747 (Springer, 2007). * Dellby, N., Krivanek, O. L., Nellist, P.
D., Batson, P. E. & Lupini, A. R. Progress in aberration-corrected scanning transmission electron microscopy. _J. Electron. Microsc._ 50, 177–185 (2001). Google Scholar * Krivanek, O.
L., Dellby, N. & Lupini, A. R. Towards sub-ångstrom electron beams. _Ultramicroscopy_ 78, 1–11 (1999). Article Google Scholar * Haider, M. et al. A spherical-aberration-corrected 200
kV transmission electron microscope. _Ultramicroscopy_ 75, 53–60 (1998). Article Google Scholar * Haider, M. et al. Electron microscopy image enhanced. _Nature_ 392, 768–769 (1998).
Article ADS Google Scholar * Rose, H. Elektronenoptische Aplanate. _Optik_ 34, 285–311 (1971). Google Scholar * Zach, J. & Haider, M. Aberration correction in a low voltage SEM by a
multipole corrector. _Nucl. Instrum. Methods Phys. Res. A_ 363, 316–325 (1995). Article ADS Google Scholar * Batson, P. E. Aberration correction results in the IBM STEM instrument.
_Ultramicroscopy_ 96, 239–249 (2003). Article Google Scholar * Nellist, P. D. et al. Direct sub-ångstrom imaging of a crystal lattice. _Science_ 305, 1741–1741 (2004). Article Google
Scholar * Kisielowski, C. et al. Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-ångstrom information limit. _Microsc.
Microanal._ 14, 469–477 (2008). Article ADS Google Scholar * Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. _Nat. Phys._ 8, 611–615 (2012). Article
Google Scholar * Shibata, N. et al. New area detector for atomic-resolution scanning transmission electron microscopy. _J. Electron. Microscopy_ 59, 473–479 (2010). Article Google Scholar
* Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. _Microsc. Microanal._ 25, 563–582 (2019).
Article ADS Google Scholar * Egerton, R. F. _Electron Energy-Loss Spectroscopy in the Electron Microscope_ (Springer, 2011). * Hillier, J. & Baker, R. F. Microanalysis by means of
electrons. _J. Appl. Phys._ 15, 663 (1944). Article ADS Google Scholar * Gubbens, A. J., Kraus, B., Krivanek, O. L. & Mooney, P. An imaging filter for high voltage electron
microscopy. _Ultramicroscopy_ 59, 255–265 (1995). Article Google Scholar * Silcox, J. Core-loss EELS. _Curr. Opin. Solid. State Mater. Sci._ 3, 336–342 (1998). Article ADS Google Scholar
* Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. _Nat. Phys._ 3, 348–353 (2007). Article Google Scholar * Zhou, W. et al. Atomically localized plasmon
enhancement in monolayer graphene. _Nat. Nanotechnol._ 7, 161–165 (2012). Article ADS Google Scholar * Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. _Nature_
468, 1088–1090 (2010). Article ADS Google Scholar * Colliex, C., Kociak, M. & Stéphan, O. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale.
_Ultramicroscopy_ 162, A1–A24 (2016). Article Google Scholar * El-Sherif, H., Jovanovic, S., Preston, J. & Basim, N. Electron microscopy and interface plasmons characterization of
cadmium telluride thin film grown incommensurately with weak bonding on sapphire. _Microsc. Microanal._ 26, 3116–3118 (2020). Article ADS Google Scholar * Yang, H., Garfunkel, E. L. &
Batson, P. E. Probing free carrier plasmons in doped semiconductors using spatially resolved electron energy loss spectroscopy. _Phys. Rev. B_ 102, 205427 (2020). Article ADS Google
Scholar * Bonnet, N., Brun, N. & Colliex, C. Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. _Ultramicroscopy_ 77,
97–112 (1999). Article Google Scholar * Jeanguillaume, C. & Colliex, C. Spectrum-image: the next step in EELS digital acquisition and processing. _Ultramicroscopy_ 28, 252–257 (1989).
Article Google Scholar * Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. _Nat. Mater._ 18, 1158–1171 (2019). Article ADS Google Scholar
* Hachtel, J., Lupini, A. & Idrobo, J. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime. _Sci. Rep._ 8, 5637 (2018). Article ADS
Google Scholar * Krivanek, O. et al. Towards sub-10 meV energy resolution STEM-EELS. _J. Phys.Conf. Ser._ 522, 012023 (2014). Article Google Scholar * Hage, F. S. et al. Nanoscale
momentum-resolved vibrational spectroscopy. _Sci. Adv._ 4, eaar7495 (2018). Article ADS Google Scholar * Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M.
Single-atom vibrational spectroscopy in the scanning transmission electron microscope. _Science_ 367, 1124 (2020). Article ADS Google Scholar * Lagos, M. J., Trügler, A., Hohenester, U.
& Batson, P. E. Mapping vibrational surface and bulk modes in a single nanocube. _Nature_ 543, 529–532 (2017). Article ADS Google Scholar * Boersch, H., Geiger, J. & Stickel, W.
Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration. _Phys. Rev. Lett._ 17, 379–381 (1966). Article ADS Google
Scholar * Egerton, R. F. Electron energy-loss spectroscopy in the TEM. _Rep. Prog. Phys._ 72, 25 (2009). Article Google Scholar * Leapman, R. D., Fejes, P. L. & Silcox, J. Orientation
dependence of core edges from anisotropic materials determined by inelastic-scattering of fast electrons. _Phys. Rev. B_ 28, 2361–2373 (1983). Article ADS Google Scholar * Botton, G. A.
A new approach to study bonding anisotropy with EELS. _J. Electron. Spectrosc. Relat. Phenom._ 143, 129–137 (2005). Article Google Scholar * Hage, F. S. et al. Topologically induced
confinement of collective modes in multilayer graphene nanocones measured by momentum-resolved STEM-VEELS. _Phys. Rev. B_ 88, 12 (2013). Article Google Scholar * Schattschneider, P.
Exchange of angular momentum in EMCD experiments. _Ultramicroscopy_ 109, 91–95 (2008). Article Google Scholar * Wang, Y. Y. et al. Evolution of the low-energy excitations and dielectric
function of Ba1-_x_K_x_BiO3 (0 <= _x_ <= 0.50). _Phys. Rev. B_ 47, 14503–14509 (1993). Article ADS Google Scholar * Liou, S. C. et al. Plasmons dispersion and nonvertical interband
transitions in single crystal Bi2Se3 investigated by electron energy-loss spectroscopy. _Phys. Rev. B_ 87, 6 (2013). Article Google Scholar * Schuster, R., Kraus, R., Knupfer, M., Berger,
H. & Buchner, B. Negative plasmon dispersion in the transition-metal dichalcogenide 2H-TaSe2. _Phys. Rev. B_ 79, 5 (2009). Article Google Scholar * Gloter, A., Chu, M. W., Kociak, M.,
Chen, C. H. & Colliex, C. Probing non-dipole allowed excitations in highly correlated materials with nanoscale resolution. _Ultramicroscopy_ 109, 1333–1337 (2009). Article Google
Scholar * Senga, R. et al. Position and momentum mapping of vibrations in graphene nanostructures. _Nature_ 573, 247 (2019). Article ADS Google Scholar * Egerton, R. F. Limits to the
spatial, energy and momentum resolution of electron energy-loss spectroscopy. _Ultramicroscopy_ 107, 575–586 (2007). Article Google Scholar * Wang, Y. Y., Cheng, S. C., Dravid, V. P. &
Zhang, F. C. Momentum-transfer resolved electron-energy-loss spectroscopy of solids — problems, solutions and applications. _Ultramicroscopy_ 59, 109–119 (1995). Article Google Scholar *
Plotkin-Swing, B. et al. Hybrid pixel direct detector for electron energy loss spectroscopy. _Ultramicroscopy_ 217, 10 (2020). Article Google Scholar * Pogany, A. P. & Turner, P. S.
Reciprocity in electron diffraction and microscopy. _Acta Crystallogr. A_ 24, 103–109 (1968). Article ADS Google Scholar * Frank, J. Envelope of electron-microscopic transfer-functions
for partially coherent illumination. _Optik_ 38, 519–536 (1973). Google Scholar * Cowley, J. M. Electron nanodiffraction. _Microsc. Res. Tech._ 46, 75–97 (1999). Article Google Scholar *
Cowley, J. M. Adjustment of a STEM instrument by use of shadow images. _Ultramicroscopy_ 4, 413–418 (1979). Article Google Scholar * Cowley, J. M. High-resolution electron-microscopy and
microdiffraction. _Ultramicroscopy_ 18, 11–17 (1985). Article Google Scholar * Cowley, J. M. in _Advances in Electronics and Electron Physics_ Vol. 46 1–53 (Elsevier, 1978). * Ronchi, V.
Forty years of history of a grating interferometer. _Appl. Opt._ 3, 437–451 (1964). Article ADS Google Scholar * Lupini, A. R. & Pennycook, S. J. Rapid autotuning for crystalline
specimens from an inline hologram. _J. Electron. Microsc._ 57, 195–201 (2008). Google Scholar * Lupini, A. R., Wang, P., Nellist, P. D., Kirkland, A. I. & Pennycook, S. J. Aberration
measurement using the Ronchigram contrast transfer function. _Ultramicroscopy_ 110, 891–898 (2010). Article Google Scholar * Sawada, H., Allen, C. S., Wang, S., Warner, J. H. &
Kirkland, A. I. Aberration measurement of the probe-forming system of an electron microscope using two-dimensional materials. _Ultramicroscopy_ 182, 195–204 (2017). Article Google Scholar
* Ramasse, Q. M. Twenty years after: how “aberration correction in the STEM” truly placed a “a synchrotron in a microscope”. _Ultramicroscopy_ 180, 41–51 (2017). Article Google Scholar *
Ramasse, Q. M. & Bleloch, A. L. Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. _Ultramicroscopy_ 106, 37–56 (2005). Article Google
Scholar * Sawada, H. et al. Measurement method of aberration from Ronchigram by autocorrelation function. _Ultramicroscopy_ 108, 1467–1475 (2008). Article Google Scholar * Lin, J. A.
& Cowley, J. M. Calibration of the operating parameters for an HB5 stem instrument. _Ultramicroscopy_ 19, 31–42 (1986). Article Google Scholar * Dwyer, C., Erni, R. & Etheridge, J.
Method to measure spatial coherence of subångstrom electron beams. _Appl. Phys. Lett_. 93, 021115 (2008). * Dwyer, C., Erni, R. & Etheridge, J. Measurement of effective source
distribution and its importance for quantitative interpretation of STEM images. _Ultramicroscopy_ 110, 952–957 (2010). Article Google Scholar * Lupini, A. R., Chi, M. & Jesse, S. Rapid
aberration measurement with pixelated detectors. _J. Microsc._ 263, 43–50 (2016). Article Google Scholar * Lupini, A. R. et al. Fast aberration measurement in multi-dimensional STEM.
_Microsc. Microanal._ 22, 252–253 (2016). Article Google Scholar * Pennycook, T. J. et al. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental
demonstration at atomic resolution. _Ultramicroscopy_ 151, 160–167 (2015). Article Google Scholar * Krajnak, M. & Etheridge, J. A symmetry-derived mechanism for atomic resolution
imaging. _Proc. Natl Acad. Sci. USA_ 117, 27805–27810 (2020). Article ADS Google Scholar * Dekkers, N. H. & de Lqng, H. Differential phase contrast in a STEM. _Optik_ 41, 452–456
(1974). Google Scholar * Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. _Ultramicroscopy_ 160, 265–280 (2016).
Article Google Scholar * Tsuda, K. & Tanaka, M. Direct observation of the symmetry breaking of the nanometer-scale local structure in the paraelectric cubic phase of BaTiO3 using
convergent-beam electron diffraction. _Appl. Phys. Express_ 9, 071501 (2016). * Jesse, S. et al. Big data analytics for scanning transmission electron microscopy ptychography. _Sci. Rep._ 6,
26348 (2016). Article ADS Google Scholar * Nord, M. et al. Strain anisotropy and magnetic domains in embedded nanomagnets. _Small_ 15, 6 (2019). Google Scholar * Pekin, T. C., Gammer,
C., Ciston, J., Minor, A. M. & Ophus, C. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping. _Ultramicroscopy_ 176, 170–176 (2017). Article Google
Scholar * Grieb, T. et al. Strain analysis from nano-beam electron diffraction: influence of specimen tilt and beam convergence. _Ultramicroscopy_ 190, 45–57 (2018). Article Google Scholar
* Han, Y. M. et al. Strain mapping of two-dimensional heterostructures with subpicometer precision. _Nano Lett._ 18, 3746–3751 (2018). Article ADS Google Scholar * Nord, M. et al.
Three-dimensional subnanoscale imaging of unit cell doubling due to octahedral tilting and cation modulation in strained perovskite thin films. _Phys. Rev. Mater._ 3, 063605 (2019). Article
Google Scholar * Hoppe, W. Trace structure analysis, ptychography, phase tomography. _Ultramicroscopy_ 10, 187–198 (1982). Article Google Scholar * Gerchbeg, R. W. & Saxton, W. O. A
practical algorithm for the determination of phase from image and diffraction plane pictures. _Optik_ 35, 227–246 (1972). Google Scholar * Cowley, J. M. Comments on ultra-high-resolution
STEM. _Ultramicroscopy_ 87, 1–4 (2001). Article Google Scholar * Nellist, P. D. & Rodenburg, J. M. Beyond the conventional information limit — the relevant coherence function.
_Ultramicroscopy_ 54, 61–74 (1994). Article Google Scholar * Rodenburg, J. M. & Bates, R. H. T. The theory of superresolution electron-microscopy via Wigner-distribution deconvolution.
_Phil. Trans. R. Soc. Lond. A_ 339, 521–553 (1992). Article ADS Google Scholar * Lupini, A. R., Oxley, M. P. & Kalinin, S. V. Pushing the limits of electron ptychography. _Science_
362, 399 (2018). Article ADS Google Scholar * Yang, H. et al. Simultaneous atomic-resolution electron ptychography and _Z_-contrast imaging of light and heavy elements in complex
nanostructures. _Nat. Commun._ 7, 12532 (2016). Article ADS Google Scholar * Van Dyck, D., Jinschek, J. R. & Chen, F.-R. ‘Big Bang’ tomography as a new route to atomic-resolution
electron tomography. _Nature_ 486, 243–246 (2012). Article ADS Google Scholar * Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams.
_Nature_ 467, 301–304 (2010). Article ADS Google Scholar * McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. _Science_ 331, 192–195 (2011).
Article ADS Google Scholar * Grillo, V. et al. Generation of nondiffracting electron Bessel beams. _Phys. Rev. X_ 4, 011013 (2014). Google Scholar * Uchida, M. & Tonomura, A.
Generation of electron beams carrying orbital angular momentum. _Nature_ 464, 737–739 (2010). Article ADS Google Scholar * Rotunno, E. et al. Electron-beam shaping in the transmission
electron microscope: control of electron-beam propagation along atomic columns. _Phys. Rev. Appl._ 11, 044072 (2019). Article ADS Google Scholar * Nguyen, D. T., Findlay, S. D. &
Etheridge, J. A menu of electron probes for optimising information from scanning transmission electron microscopy. _Ultramicroscopy_ 184, 143–155 (2018). Article Google Scholar * Zheng, C.
L. et al. Axicon lens for electrons using a magnetic vortex: the efficient generation of a Bessel beam. _Phys. Rev. Lett._ 119, 174801 (2017). Article ADS Google Scholar * Verbeeck, J.
et al. Demonstration of a 2×2 programmable phase plate for electrons. _Ultramicroscopy_ 190, 58–65 (2018). Article Google Scholar * Tavabi, A. H. et al. Generation of electron vortices
using nonexact electric fields. _Phys. Rev. Res._ 2, 013185 (2020). Article Google Scholar * Tavabi, A. H. et al. Experimental demonstration of an electrostatic orbital angular momentum
sorter for electrons. _Phys. Rev. Lett._ 126 094802 (2021). Article ADS Google Scholar * Grillo, V. et al. Observation of nanoscale magnetic fields using twisted electron beams. _Nat.
Commun._ 8, 689 (2017). Article Google Scholar * Edstrom, A., Lubk, A. & Rusz, J. Quantum mechanical treatment of atomic-resolution differential phase contrast imaging of magnetic
materials. _Phys. Rev. B_ 99, 174428 (2019). * Pohl, D. et al. Atom size electron vortex beams with selectable orbital angular momentum. _Sci. Rep._ 7, 934 (2017). Article ADS Google
Scholar * Rusz, J. & Bhowmick, S. Boundaries for efficient use of electron vortex beams to measure magnetic properties. _Phys. Rev. Lett_. 111, 105504 (2013). * Ophus, C. et al.
Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry. _Nat. Commun._ 7, 10719 (2016). Article ADS Google
Scholar * Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. _Nat. Commun._ 8, 14999 (2017). Article ADS
Google Scholar * Zeltmann, S. E. et al. Patterned probes for high precision 4D-STEM Bragg measurements. _Ultramicroscopy_ 209, 112890 (2020). Article Google Scholar * Guzzinati, G. et al.
Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping. _Appl. Phys. Lett_. 114, 243501 (2019). * Stoger-Pollach, M., Schachinger, T., Biedermann, K. &
Beyer, V. Valence EELS below the limit of inelastic delocalization using conical dark field EFTEM or Bessel beams. _Ultramicroscopy_ 173, 24–30 (2017). Article Google Scholar * Nellist, P.
D. & Pennycook, S. J. Incoherent imaging using dynamically scattered coherent electrons. _Ultramicroscopy_ 78, 111–124 (1999). Article Google Scholar * Grillo, V. et al. Measuring the
orbital angular momentum spectrum of an electron beam. _Nat. Commun._ 8, 15536 (2017). Article ADS Google Scholar * Rotunno, E. et al. Alignment of electron optical beam shaping elements
using a convolutional neural network. _Ultramicroscopy_ 228, 113338 (2021). Article Google Scholar * Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & Freitas, N. D. Taking the
human out of the loop: a review of Bayesian optimization. _Proc. IEEE_ 104, 148–175 (2016). Article Google Scholar * Silver, D. et al. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. _Science_ 362, 1140–1144 (2018). Article ADS MathSciNet MATH Google Scholar * Wilkinson, M. D. et al. The FAIR guiding principles for
scientific data management and stewardship. _Sci. Data_ 3, 160018 (2016). Article Google Scholar * Collins, T. J. ImageJ for microscopy. _Biotechniques_ 43, 1S (2007). Article MathSciNet
Google Scholar * Roels, J. et al. An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. _Nat. Commun._ 11, 771 (2020). Article ADS Google Scholar *
Somnath, S. et al. USID and Pycroscopy–Open frameworks for storing and analyzing spectroscopic and imaging data. Preprint at https://arxiv.org/abs/1903.09515 (2019). * Clausen, A. et al.
LiberTEM: Software platform for scalable multidimensional data processing in transmission electron microscopy. _J. Open. Source Softw._ 5, 2006 (2020). Article ADS Google Scholar *
Savitzky, B. H. et al. py4DSTEM: Open Source Software for 4D-STEM Data Analysis. _Micros. Microanal._ 25, 124–125 (2019). Article Google Scholar * Koch, C. T. Determination of core
structure periodicity and point defect density along dislocations. PhD thesis, Arizona State University https://www.physik.hu-berlin.de/en/sem/images/koch02_phdthesis.pdf (2002). * Allen, L.
J., D’Alfonso, A. J. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. _Ultramicroscopy_ 151, 11–22 (2015). Article Google Scholar * Barthel, J. Dr. Probe: a
software for high-resolution STEM image simulation. _Ultramicroscopy_ 193, 1–11 (2018). Article Google Scholar * Lobato, I. & Van Dyck, D. MULTEM: A new multislice program to perform
accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA. _Ultramicroscopy_ 156, 9–17 (2015). Article Google Scholar * Oelerich, J. O. et
al. STEMsalabim: a high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. _Ultramicroscopy_ 177, 91–96 (2017).
Article Google Scholar * Madsen, J. & Susi, T. abTEM: ab initio transmission electron microscopy image simulation. _Microsc. Microanal._ 26, 448–450 (2020). Article ADS Google
Scholar * Pryor, A., Ophus, C. & Miao, J. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy. _Adv. Struct. Chem. Imag._
3, 15 (2017). Article Google Scholar * Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. _Phys. Rev. B_ 71,
035109 (2005). Article ADS Google Scholar * Sakaguchi, N., Matsumoto, S., Kunisada, Y. & Ueda, M. Interaction of localized surface plasmons of a silver nanosphere dimer embedded in a
uniform medium: scanning transmission electron microscopy electron energy-loss spectroscopy and discrete dipole approximation simulation. _J. Phys. Chem. C_ 123, 6735–6744 (2019). Article
Google Scholar * Mendis, B. G. An inelastic multislice simulation method incorporating plasmon energy losses. _Ultramicroscopy_ 206, 112816 (2019). Article Google Scholar * Brown, H. G.,
Ciston, J. & Ophus, C. Linear-scaling algorithm for rapid computation of inelastic transitions in the presence of multiple electron scattering. _Phys. Rev. Res._ 1, 033186 (2019).
Article Google Scholar * Tessmer, J., Singh, S., Gu, Y., El-Awady, J. A. & Graef, M. D. Scanning transmission electron microscopy image simulations of complex dislocation structures
generated by discrete dislocation dynamics. _Ultramicroscopy_ 219, 113124 (2020). Article Google Scholar * Thomas, P. J. & Midgley, P. A. Image-spectroscopy — II. The removal of plural
scattering from extended energy-filtered series by Fourier deconvolution. _Ultramicroscopy_ 88, 187–194 (2001). Article Google Scholar * Leapman, R. D., Rez, P. & Mayers, D. F. K, L,
and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions. _J. Chem. Phys._ 72, 1232–1243 (1980). Article ADS Google Scholar * Ahn, C. C.
& Rez, P. Inner shell edge profiles in electron energy loss spectroscopy. _Ultramicroscopy_ 17, 105–115 (1985). Article Google Scholar * Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L.
& Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. _Microsc. Microanal._ 18, 667–675 (2012). Article ADS Google Scholar * Varela, M. et al.
Atomic-resolution imaging of oxidation states in manganites. _Phys. Rev. B_ 79, 085117 (2009). Article ADS Google Scholar * Verbeeck, J., Van Aert, S. & Bertoni, G. Model-based
quantification of EELS spectra: Including the fine structure. _Ultramicroscopy_ 106, 976–980 (2006). Article Google Scholar * Bosman, M. et al. Two-dimensional mapping of chemical
information at atomic resolution. _Phys. Rev. Lett._ 99, 086102 (2007). Article ADS Google Scholar * Bosman, M., Watanabe, M., Alexander, D. & Keast, V. Mapping chemical and bonding
information using multivariate analysis of electron energy-loss spectrum images. _Ultramicroscopy_ 106, 1024–1032 (2006). Article Google Scholar * Thersleff, T. et al. Chemically and
morphologically distinct grain boundaries in Ge-doped Cu2ZnSnSe4 solar cells revealed with STEM-EELS. _Mater. Des._ 122, 102–109 (2017). Article Google Scholar * Potapov, P. & Lubk, A.
Extraction of physically meaningful endmembers from STEM spectrum-images combining geometrical and statistical approaches. _Micron_ 145, 103068 (2021). Article Google Scholar * Bobynko,
J., MacLaren, I. & Craven, A. J. Spectrum imaging of complex nanostructures using DualEELS: I. Digital extraction replicas. _Ultramicroscopy_ 149, 9–20 (2015). Article Google Scholar *
Craven, A. J., Sala, B., Bobynko, J. & MacLaren, I. Spectrum imaging of complex nanostructures using DualEELS: II. Absolute quantification using standards. _Ultramicroscopy_ 186, 66–81
(2018). Article Google Scholar * Shiga, M. et al. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. _Ultramicroscopy_ 170, 43–59 (2016). Article
Google Scholar * Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. _Nature_ 502, 80–84 (2013). Article ADS Google Scholar *
Lichtert, S. & Verbeeck, J. Statistical consequences of applying a PCA noise filter on EELS spectrum images. _Ultramicroscopy_ 125, 35–42 (2013). Article Google Scholar * LeBeau, J.
M., Findlay, S. D., Allen, L. J. & Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. _Phys. Rev. Lett._ 100, 4 (2008). Article Google Scholar *
LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Standardless atom counting in scanning transmission electron microscopy. _Nano Lett._ 10, 4405–4408 (2010). Article ADS Google
Scholar * Katz-Boon, H. et al. Three-dimensional morphology and crystallography of gold nanorods. _Nano Lett._ 11, 273–278 (2011). Article ADS Google Scholar * Katz-Boon, H. et al.
Stability of crystal facets in gold nanorods. _Nano Lett._ 15, 1635–1641 (2015). Article ADS Google Scholar * Erni, R., Heinrich, H. & Kostorz, G. Quantitative characterisation of
chemical inhomogeneities in Al–Ag using high-resolution _Z_-contrast STEM. _Ultramicroscopy_ 94, 125–133 (2003). Article Google Scholar * Jones, L. Quantitative ADF STEM: acquisition,
analysis and interpretation. in _14th European Workshop on Modern Developments and Applications in Microbeam Analysis_, _IOP Conference Series Materials Science and Engineering_ Vol. 109
(IOP Publishing, 2016). * Dwyer, C. et al. Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters. _Appl. Phys. Lett._ 100, 4 (2012).
Article Google Scholar * Ishikawa, R., Lupini, A. R., Findlay, S. D. & Pennycook, S. J. Quantitative annular dark field electron microscopy using single electron signals. _Microsc.
Microanal._ 20, 99–110 (2014). Article ADS Google Scholar * Sang, X. H. & LeBeau, J. M. Characterizing the response of a scintillator-based detector to single electrons.
_Ultramicroscopy_ 161, 3–9 (2016). Article Google Scholar * LeBeau, J. M. & Stemmer, S. Experimental quantification of annular dark-field images in scanning transmission electron
microscopy. _Ultramicroscopy_ 108, 1653–1658 (2008). Article Google Scholar * LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron
diffraction: theory and applications. _Ultramicroscopy_ 110, 118–125 (2010). Article Google Scholar * Verbeeck, J., Beche, A. & Van den Broek, W. A holographic method to measure the
source size broadening in STEM. _Ultramicroscopy_ 120, 35–40 (2012). Article Google Scholar * Maunders, C., Dwyer, C., Tiemeijer, P. C. & Etheridge, J. Practical methods for the
measurement of spatial coherence — a comparative study. _Ultramicroscopy_ 111, 1437–1446 (2011). Article Google Scholar * Haider, M., Uhlemann, S. & Zach, J. Upper limits for the
residual aberrations of a high-resolution aberration-corrected STEM. _Ultramicroscopy_ 81, 163–175 (2000). Article Google Scholar * Kuramochi, K. et al. Effect of chromatic aberration on
atomic-resolved spherical aberration corrected STEM images. _Ultramicroscopy_ 110, 36–42 (2009). Article Google Scholar * Zheng, C. L. & Etheridge, J. Measurement of chromatic
aberration in STEM and SCEM by coherent convergent beam electron diffraction. _Ultramicroscopy_ 125, 49–58 (2013). Article Google Scholar * Voyles, P. M., Grazul, J. L. & Muller, D. A.
Imaging individual atoms inside crystals with ADF-STEM. _Ultramicroscopy_ 96, 251–273 (2003). Article Google Scholar * Sang, X. H., Oni, A. A. & LeBeau, J. M. Atom column indexing:
atomic resolution image analysis through a matrix representation. _Microsc. Microanal._ 20, 1764–1771 (2014). Article ADS Google Scholar * Yankovich, A. B. et al. Picometre-precision
analysis of scanning transmission electron microscopy images of platinum nanocatalysts. _Nat. Commun_. 4155 (2014). * Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. &
Gossmann, H. J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. _Nature_ 416, 826–829 (2002). Article ADS Google Scholar * Ishikawa, R., Lupini,
A. R., Findlay, S. D., Taniguchi, T. & Pennycook, S. J. Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron
microscopy. _Nano Lett._ 14, 1903–1908 (2014). Article ADS Google Scholar * Mevenkamp, N. et al. Poisson noise removal from high-resolution STEM images based on periodic block matching.
_Adv. Struct. Chem. Imag._ 1, 19 (2015). Article Google Scholar * Bals, S., Van Aert, S., Van Tendeloo, G. & Avila-Brande, D. Statistical estimation of atomic positions from exit wave
reconstruction with a precision in the picometer range. _Phys. Rev. Lett._ 96, 4 (2006). Article Google Scholar * De Backer, A., van den Bos, K. H. W., Van den Broek, W., Sijbers, J. &
Van Aert, S. StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. _Ultramicroscopy_ 171, 104–116 (2016).
Article Google Scholar * So, Y. G. & Kimoto, K. Effect of specimen misalignment on local structure analysis using annular dark-field imaging. _J. Electron. Microsc._ 61, 207–215
(2012). Article Google Scholar * Schmid, H., Okunishi, E., Oikawa, T. & Mader, W. Structural and elemental analysis of iron and indium doped zinc oxide by spectroscopic imaging in
Cs-corrected STEM. _Micron_ 43, 49–56 (2012). Article Google Scholar * Fan, L., Zhang, F., Fan, H. & Zhang, C. Brief review of image denoising techniques. _Vis. Comput. Indust. Biomed.
Art_ 2, 7 (2019). Article Google Scholar * Ziatdinov, M. et al. Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking
local transformations. _ACS Nano_ 11, 12742–12752 (2017). Article Google Scholar * Ziatdinov, M., Nelson, C., Vasudevan, R. K., Chen, D. Y. & Kalinin, S. V. Building ferroelectric
from the bottom up: the machine learning analysis of the atomic-scale ferroelectric distortions. _Appl. Phys. Lett._ 115, 052902 (2019). Article ADS Google Scholar * Lin, R., Zhang, R.,
Wang, C., Yang, X.-Q. & Xin, H. L. TEMImageNet and AtomSegNet deep learning training library and models for high-precision atom segmentation, localization, denoising, and
super-resolution processing of atom-resolution scanning TEM images. Preprint at https://arxiv.org/abs/2012.09093 (2020). * Ziatdinov, M., Dyck, O., Jesse, S. & Kalinin, S. V. Atomic
mechanisms for the Si atom dynamics in graphene: chemical transformations at the edge and in the bulk. _Adv. Funct. Mater._ 29, 1904480 (2019). Article Google Scholar * Ziatdinov, M. et
al. Building and exploring libraries of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study. _Sci. Adv._ 5, eaaw8989 (2019). Article ADS
Google Scholar * Lee, C. H. et al. Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. _Nano Lett._
20, 3369–3377 (2020). Article ADS Google Scholar * Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. _Science_ 313, 504 (2006). Article
ADS MathSciNet MATH Google Scholar * Roccapriore, K. M., Ziatdinov, M., Cho, S. H., Hachtel, J. A. & Kalinin, S. V. Predictability of localized plasmonic responses in nanoparticle
assemblies. _Small_ 17, 2100181 (2021). Article Google Scholar * Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2013). *
Kingma, D. P. & Welling, M. An introduction to variational autoencoders. _Found. Trends Mach. Learn._ 12, 307–392 (2019). Article MATH Google Scholar * Blei, D. M., Kucukelbir, A.
& McAuliffe, J. D. Variational inference: a review for statisticians. _J. Am. Stat. Assoc._ 112, 859–877 (2017). Article MathSciNet Google Scholar * Muller, D. A. & Grazul, J.
Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. _J. Electron. Microsc._ 50, 219–226 (2001). Google Scholar * Vonharrach, H. S. Instrumental factors in
high-resolution FEG STEM. _Ultramicroscopy_ 58, 1–5 (1995). Article Google Scholar * Couillard, M., Radtke, G. & Botton, G. A. Strain fields around dislocation arrays in a Σ9 silicon
bicrystal measured by scanning transmission electron microscopy. _Phil. Mag._ 93, 1250–1267 (2013). Article ADS Google Scholar * Isakozawa, S., Tomonaga, S., Hashimoto, T. & Baba, N.
High-precision image-drift-correction method for EM images with a low signal-to-noise ratio. _Microscopy_ 63, 301–312 (2014). Article Google Scholar * Sang, X. H. & LeBeau, J. M.
Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. _Ultramicroscopy_ 138, 28–35 (2014). Article Google Scholar * Dycus, J. H.
et al. Accurate nanoscale crystallography in real-space using scanning transmission electron microscopy. _Microsc. Microanal._ 21, 946–952 (2015). Article ADS Google Scholar * Jones, L.
et al. Smart Align — a new tool for robust non-rigid registration of scanning microscope data. _Adv. Struct. Chem. Imag._ 1, 8 (2015). Article Google Scholar * Ophus, C., Ciston, J. &
Nelson, C. T. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions. _Ultramicroscopy_ 162,
1–9 (2016). Article Google Scholar * Berkels, B. & Liebscher, C. H. Joint non-rigid image registration and reconstruction for quantitative atomic resolution scanning transmission
electron microscopy. _Ultramicroscopy_ 198, 49–57 (2019). Article Google Scholar * Yankovich, A. B. et al. Non-rigid registration and non-local principal component analysis to improve
electron microscopy spectrum images. _Nanotechnology_ 27, 364001 (2016). Article Google Scholar * Wang, Y. et al. Correcting the linear and nonlinear distortions for atomically resolved
STEM spectrum and diffraction imaging. _Microscopy_ 67, i114–i122 (2018). Article Google Scholar * Barcena-Gonzalez, G. et al. CDrift: an algorithm to correct linear drift from a single
high-resolution STEM image. _Microsc. Microanal._ 26, 913–920 (2020). Article ADS Google Scholar * Sanchez, A. M. et al. An approach to the systematic distortion correction in
aberration-corrected HAADF images. _J. Microsc._ 221, 1–7 (2006). Article MathSciNet Google Scholar * Braidy, N., Le Bouar, Y., Lazar, S. & Ricolleau, C. Correcting scanning
instabilities from images of periodic structures. _Ultramicroscopy_ 118, 67–76 (2012). Article Google Scholar * Ning, S. C. et al. Scanning distortion correction in STEM images.
_Ultramicroscopy_ 184, 274–283 (2018). Article Google Scholar * Roccapriore, K. M., Ziatdinov, M. & Kalinin, S. V. Identification and correction of temporal and spatial distortions in
scanning transmission electron microscopy. _Ultramicroscopy_ 229, 113337 (2021). Article Google Scholar * Sang, X. H. et al. Dynamic scan control in STEM: spiral scans. _Adv. Struct. Chem.
Imag_. 2, 6 (2016). * Li, X., Dyck, O., Kalinin, S. V. & Jesse, S. Compressed sensing of scanning transmission electron microscopy (STEM) with nonrectangular scans. _Microsc.
Microanal._ 24, 623–633 (2018). Article ADS Google Scholar * Stevens, A. et al. A sub-sampled approach to extremely low-dose STEM. _Appl. Phys. Lett._ 112, 043104 (2018). Article ADS
Google Scholar * Zobelli, A. et al. Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns. _Ultramicroscopy_ 212, 112912 (2020). Article Google Scholar *
Beche, A., Goris, B., Freitag, B. & Verbeeck, J. Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy. _Appl. Phys.
Lett._ 108, 093103 (2016). Article ADS Google Scholar * Velazco, A., Nord, M., Beche, A. & Verbeeck, J. Evaluation of different rectangular scan strategies for STEM imaging.
_Ultramicroscopy_ 215, 113021 (2020). * Dai, G. L. et al. Reference nano-dimensional metrology by scanning transmission electron microscopy. _Meas. Sci. Technol._ 24, 085001 (2013). Article
ADS Google Scholar * Radaelli, P. G. & Cheong, S. W. Structural phenomena associated with the spin-state transition in LaCoO3. _Phys. Rev. B_ 66, 094408 (2002). Article ADS Google
Scholar * Zhou, J. S. & Goodenough, J. B. Chemical bonding and electronic structure of _R_NiO3 (_R_ = rare earth). _Phys. Rev. B_ 69, 153105 (2004). Article ADS Google Scholar *
Zhou, J. S. & Goodenough, J. B. Universal octahedral-site distortion in orthorhombic perovskite oxides. _Phys. Rev. Lett._ 94, 065501 (2005). Article ADS Google Scholar * Taraci, J.
L. et al. Strain mapping in nanowires. _Nanotechnology_ 16, 2365–2371 (2005). Article ADS Google Scholar * Hytch, M. J., Putaux, J. L. & Thibault, J. Stress and strain around
grain-boundary dislocations measured by high-resolution electron microscopy. _Phil. Mag._ 86, 4641–4656 (2006). Article ADS Google Scholar * Chu, M. W., Szafraniak, I., Hesse, D., Alexe,
M. & Gosele, U. Elastic coupling between 90° twin walls and interfacial dislocations in epitaxial ferroelectric perovskites: a quantitative high-resolution transmission electron
microscopy study. _Phys. Rev. B_ 72, 174112 (2005). * Zhao, C. W., Xing, Y. M., Zhou, C. E. & Bai, P. C. Experimental examination of displacement and strain fields in an edge dislocation
core. _Acta Mater._ 56, 2570–2575 (2008). Article ADS Google Scholar * Pennycook, S. J. & Nellist, P. D. _Scanning Transmission Electron Microscopy: Imaging and Analysis_ (Springer
Science & Business Media, 2011). * Sousa, A. A. & Leapman, R. D. Development and application of STEM for the biological sciences. _Ultramicroscopy_ 123, 38–49 (2012). Article Google
Scholar * Tagantsev, A. K., Cross, L. E. & Fousek, J. _Domains in Ferroic Crystals and Thin Films_ (Springer, 2010). * Salje, E. K. H. Ferroelasticity. _Contemp. Phys._ 41, 79–91
(2000). Article ADS Google Scholar * Pan, X. Q., Kaplan, W. D., Ruhle, M. & Newnham, R. E. Quantitative comparison of transmission electron microscopy techniques for the study of
localized ordering on a nanoscale. _J. Am. Ceram. Soc._ 81, 597–605 (1998). Article Google Scholar * Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in
epitaxial ultrathin ferroelectric films. _Nat. Mater._ 6, 64–69 (2007). Article ADS Google Scholar * Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged
domain walls in ferroelectric films. _Nat. Mater._ 7, 57–61 (2008). Article ADS Google Scholar * Chisholm, M. F., Luo, W. D., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale
compensation phenomena at polar interfaces. _Phys. Rev. Lett_. 105, 197602 (2010). * Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated
using aberration-corrected ultrahigh-resolution transmission electron microscopy. _Phys. Rev. B_ 79, 081405 (2009). * Borisevich, A. et al. Mapping octahedral tilts and polarization across a
domain wall in BiFeO3 from _Z_-contrast scanning transmission electron microscopy image atomic column shape analysis. _ACS Nano_ 4, 6071–6079 (2010). Article Google Scholar * Kim, Y. M.
et al. Interplay of octahedral tilts and polar order in BiFeO3 Films. _Adv. Mater._ 25, 2497–2504 (2013). Article Google Scholar * He, Q. et al. Towards 3D Mapping of BO6 octahedron
rotations at perovskite heterointerfaces, unit cell by unit cell. _ACS Nano_ 9, 8412–8419 (2015). Article Google Scholar * Kim, Y. M. et al. Direct observation of ferroelectric field
effect and vacancy-controlled screening at the BiFeO3/LaxSr1-_x_MnO3 interface. _Nat. Mater._ 13, 1019–1025 (2014). Article ADS Google Scholar * Borisevich, A. Y. et al. Interface dipole
between two metallic oxides caused by localized oxygen vacancies. _Phys. Rev. B_ 86, 140102 (2012). * Borisevich, A. Y. et al. Exploring mesoscopic physics of vacancy-ordered systems through
atomic scale observations of topological defects. _Phys. Rev. Lett_. 109, 065702 (2012). * Li, Q. et al. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices
using machine learning and phase-field modeling. _Nat. Commun_. 8, 1468 (2017). * Nelson, C. T. et al. Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically
resolved STEM data. _Nat. Commun._ 11, 6361 (2020). Article ADS Google Scholar * Rossell, M. D. et al. Atomic structure of highly strained BiFeO3 thin films. _Phys. Rev. Lett._ 108, 5
(2012). Article Google Scholar * Campanini, M., Erni, R., Yang, C. H., Ramesh, R. & Rossell, M. D. Periodic giant polarization gradients in doped BiFeO3 thin films. _Nano Lett._ 18,
717–724 (2018). Article ADS Google Scholar * Campanini, M. et al. Atomic-resolution differential phase contrast STEM on ferroelectric materials: a mean-field approach. _Phys. Rev. B_ 101,
184116 (2020). Article ADS Google Scholar * Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. _Nat. Mater._ 8, 271–280 (2009). Article
ADS Google Scholar * Welborn, M., Tang, W. J., Ryu, J., Petkov, V. & Henkelman, G. A combined density functional and x-ray diffraction study of Pt nanoparticle structure. _J. Chem.
Phys._ 135, 014503 (2011). Article ADS Google Scholar * Meredig, B. & Wolverton, C. A hybrid computational-experimental approach for automated crystal structure solution. _Nat.
Mater._ 12, 123–127 (2013). Article ADS Google Scholar * Alkauskas, A., McCluskey, M. D. & Van de Walle, C. G. Tutorial: defects in semiconductors — combining experiment and theory.
_J. Appl. Phys._ 119, 181101 (2016). Article ADS Google Scholar * Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials
science. _Nature_ 559, 547–555 (2018). Article ADS Google Scholar * Kolb, B., Lentz, L. C. & Kolpak, A. M. Discovering charge density functionals and structure-property relationships
with PROPhet: a general framework for coupling machine learning and first-principles methods. _Sci. Rep._ 7, 1192 (2017). Article ADS Google Scholar * Schuett, O. & VandeVondele, J.
Machine learning adaptive basis sets for efficient large scale density functional theory simulation. _J. Chem. Theory Comput._ 14, 4168–4175 (2018). Article Google Scholar * Sen, F. G. et
al. Sen, F. G. et al. Atomistic Simulations of Grain Boundaries in CdTe in _2015 IEEE 42nd Photovoltaic Specialists Conference_ (IEEE, 2015). * Schwenker, E. et al. An autonomous microscopy
workflow for structure determination from atomic-resolution images. _Microsc. Microanal._ 24, 510–511 (2018). Article Google Scholar * Wei, J. et al. Direct imaging of atomistic grain
boundary migration. _Nat. Mater._ 20, 951–955 (2021). Article ADS Google Scholar * Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error
visibility to structural similarity. _IEEE Trans. Image Process._ 13, 600–612 (2004). Article ADS Google Scholar * Liu, T.-J., Lin, Y.-C., Lin, W. & Kuo, C. C. J. Visual quality
assessment: recent developments, coding applications and future trends. _APSIPA Trans. Signal. Inf. Process._ 2, e4 (2013). Article Google Scholar * Lin, J. Y., Liu, T., Wu, E. C. &
Kuo, C. J. in _Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific_ 1–5 (IEEE, 2014). * Guo, J. L. et al. Effect of selenium and chlorine
co-passivation in polycrystalline CdSeTe devices. _Appl. Phys. Lett._ 115, 50 (2019). Article Google Scholar * Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by
annular dark-field electron microscopy. _Nature_ 464, 571–574 (2010). Article ADS Google Scholar * Treacy, M. M. J. _Z_ dependence of electron scattering by single atoms into annular
dark-field detectors. _Microsc. Microanal._ 17, 847–858 (2011). Article ADS Google Scholar * Yamashita, S. et al. Atomic number dependence of _Z_ contrast in scanning transmission
electron microscopy. _Sci. Rep._ 8, 12325 (2018). Article ADS Google Scholar * Li, H. et al. Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. _ACS
Nano_ 11, 3392–3403 (2017). Article Google Scholar * Wang, S. et al. Preferential Pt nanocluster seeding at grain boundary dislocations in polycrystalline monolayer MoS2. _ACS Nano_ 12,
5626–5636 (2018). Article Google Scholar * Zan, R., Bangert, U., Ramasse, Q. & Novoselov, K. S. Metal−graphene interaction studied via atomic resolution scanning transmission electron
microscopy. _Nano Lett._ 11, 1087–1092 (2011). Article ADS Google Scholar * Wang, S. et al. In situ atomic-scale studies of the formation of epitaxial Pt nanocrystals on monolayer
molybdenum disulfide. _ACS Nano_ 11, 9057–9067 (2017). Article Google Scholar * Li, X. et al. Precursor design for high density single pt atom sites on MoS2: enhanced stability at elevated
temperatures and reduced 3D clustering. _Chem. Mater._ 32, 2541–2551 (2020). Article Google Scholar * Tai, K.-L. et al. Phase variations and layer epitaxy of 2D PdSe2 grown on 2D
monolayers by direct selenization of molecular Pd precursors. _ACS Nano_ 14, 11677–11690 (2020). Article Google Scholar * Sinha, S. et al. Atomic structure and defect dynamics of monolayer
lead iodide nanodisks with epitaxial alignment on graphene. _Nat. Commun._ 11, 823 (2020). Article ADS Google Scholar * Poh, S. M. et al. Molecular beam epitaxy of highly crystalline
MoSe2 on hexagonal boron nitride. _ACS Nano_ 12, 7562–7570 (2018). Article Google Scholar * Gallagher, J. C. et al. Epitaxial growth of iridate pyrochlore Nd2Ir2O7 films. _Sci. Rep._ 6,
22282 (2016). Article ADS Google Scholar * Gerkman, M. A. et al. Direct imaging of individual molecular binding to clean nanopore edges in 2D monolayer MoS2. _ACS Nano_ 14, 153–165
(2020). Article Google Scholar * Cai, C., Han, S., Wang, Q. & Gu, M. Direct observation of yolk–shell transforming to gold single atoms and clusters with superior oxygen evolution
reaction efficiency. _ACS Nano_ 13, 8865–8871 (2019). Article Google Scholar * Sun, Y. et al. Subunit cell–level measurement of polarization in an individual polar vortex. _Sci. Adv._ 5,
eaav4355 (2019). Article ADS Google Scholar * Ohyama, J. et al. Atomic-scale insight into the structural effect of a supported Au catalyst based on a size-distribution analysis using
Cs-STEM and morphological image-processing. _J. Catal._ 335, 24–35 (2016). Article Google Scholar * Melzer, D. et al. Atomic-scale determination of active facets on the MoVTeNb oxide M1
phase and their intrinsic catalytic activity for ethane oxidative dehydrogenation. _Angew. Chem. Int. Ed._ 55, 8873–8877 (2016). Article Google Scholar * Qiao, B. et al. Single-atom
catalysis of CO oxidation using Pt1/FeOx. _Nat. Chem._ 3, 634–641 (2011). Article Google Scholar * Liu, J. et al. In situ tracing of atom migration in Pt/NiPt hollow spheres during
catalysis of CO oxidation. _Chem. Commun._ 50, 1804–1807 (2014). Article Google Scholar * Gerkman, M. A., Sinha, S., Warner, J. H. & Han, G. G. D. Direct imaging of photoswitching
molecular conformations using individual metal atom markers. _ACS Nano_ 13, 87–96 (2019). Article Google Scholar * Lee, J. K. et al. Metal atom markers for imaging epitaxial molecular
self-assembly on graphene by scanning transmission electron microscopy. _ACS Nano_ 13, 7252–7260 (2019). Article Google Scholar * Kengmana, E. S., Lee, J. K., Li, X., Warner, J. H. &
Han, G. G. D. Self-assembly of Bowlic supramolecules on graphene imaged at the individual molecular level using heavy atom tagging. _Small_ 16, 2002860 (2020). Article Google Scholar *
Henninen, T. R., Bon, M., Wang, F., Passerone, D. & Erni, R. The structure of sub-nm platinum clusters at elevated temperatures. _Angew. Chem. Int. Ed._ 59, 839–845 (2020). Article
Google Scholar * Furnival, T., Leary, R. K. & Midgley, P. A. Denoising time-resolved microscopy image sequences with singular value thresholding. _Ultramicroscopy_ 178, 112–124 (2017).
Article Google Scholar * Wang, F., Henninen, T. R., Keller, D. & Erni, R. Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images. _Appl. Microsc._ 50,
23 (2020). Article Google Scholar * Mirman, R. _Point Groups, Space Groups, Crystals, Molecules_ (World Scientific, 1999). * Glinchuk, M. D. & Stephanovich, V. A. Dynamic properties of
relaxor ferroelectrics. _J. Appl. Phys._ 85, 1722–1726 (1999). Article ADS Google Scholar * Vugmeister, B. E. Polarization dynamics and formation of polar nanoregions in relaxor
ferroelectrics. _Phys. Rev. B_ 73, 174117 (2006). * Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. _Nature_ 546, 391–395
(2017). Article ADS Google Scholar * Binder, K. & Reger, J. D. Theory of orientational glasses models, concepts, simulations. _Adv. Phys._ 41, 547–627 (1992). Article ADS Google
Scholar * Binder, K. & Young, A. P. Spin-glasses — experimental facts, theoretical concepts, and open questions. _Rev. Mod. Phys._ 58, 801–976 (1986). Article ADS Google Scholar *
Dagotto, E. Complexity in strongly correlated electronic systems. _Science_ 309, 257–262 (2005). Article ADS Google Scholar * Dagotto, E., Hotta, T. & Moreo, A. Colossal
magnetoresistant materials: the key role of phase separation. _Phys. Rep. Rev. Sec. Phys. Lett._ 344, 1–153 (2001). Google Scholar * Blinc, R. et al. Local polarization distribution and
Edwards–Anderson order parameter of relaxor ferroelectrics. _Phys. Rev. Lett._ 83, 424–427 (1999). Article ADS Google Scholar * Cross, L. E. Relaxor ferroelectrics. _Ferroelectrics_ 76,
241–267 (1987). Article Google Scholar * Cliffe, M. J. et al. Structural simplicity as a restraint on the structure of amorphous silicon. _Phys. Rev. B_ 95, 224108 (2017). * Keen, D. A.
& Goodwin, A. L. The crystallography of correlated disorder. _Nature_ 521, 303–309 (2015). Article ADS Google Scholar * Cheetham, A. K., Bennett, T. D., Coudert, F. X. & Goodwin,
A. L. Defects and disorder in metal organic frameworks. _Dalton Trans._ 45, 4113–4126 (2016). Article Google Scholar * Dobigeon, N. & Brun, N. Spectral mixture analysis of EELS
spectrum-images. _Ultramicroscopy_ 120, 25–34 (2012). Article Google Scholar * Pennycook, S. J., Varela, M., Lupini, A. R., Oxley, M. P. & Chisholm, M. F. Atomic-resolution
spectroscopic imaging: past, present and future. _J. Electron. Microsc._ 58, 87–97 (2009). Article Google Scholar * Jiang, Y. et al. Electron ptychography of 2D materials to deep
sub-ångstrom resolution. _Nature_ 559, 343–349 (2018). Article Google Scholar * Belianinov, A. et al. Identification of phases, symmetries and defects through local crystallography. _Nat.
Commun_. 6, 7801 (2015). * Ziatdinov, M. et al. Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3. _Nat. Commun_. 7, 13774 (2016). * He, Q., Woo,
J., Belianinov, A., Guliants, V. V. & Borisevich, A. Y. Better catalysts through microscopy: mesoscale M1/M2 intergrowth in molybdenum-vanadium based complex oxide catalysts for propane
ammoxidation. _ACS Nano_ 9, 3470–3478 (2015). Article Google Scholar * Wu, Z. et al. A comprehensive survey on graph neural networks. _IEEE Trans. Neural Netw. Learn. Syst._ 32, 4–24
(2021). Article MathSciNet Google Scholar * Kalinin, S. V., Dyck, O., Ghosh, A., Sumpter, B. G. & Ziatdinov, M. Unsupervised machine learning discovery of chemical transformation
pathways from atomically-resolved imaging data. Preprint at https://arxiv.org/abs/2010.09196 (2020). * Wicks, S. et al. Collective dynamics in nanostructured polycrystalline ferroelectric
thin films using local time-resolved measurements and switching spectroscopy. _Acta Mater._ 58, 67–75 (2010). Article ADS Google Scholar * Vlcek, L., Maksov, A., Pan, M., Vasudevan, R. K.
& Kalinin, S. V. Knowledge extraction from atomically resolved images. _ACS Nano_ 11, 10313–10320 (2017). Article Google Scholar * Landau, L. D. & Lifshitz, E. M. _Statistical
Physics_ (Elsevier Science, 2013). * Kitaev, A. Anyons in an exactly solved model and beyond. _Ann. Phys._ 321, 2–111 (2006). Article ADS MathSciNet MATH Google Scholar * Vlcek, L.,
Yang, S., Ziatdinov, M., Kalinin, S. & Vasudevan, R. Statistical physics-based framework and Bayesian inference for model selection and uncertainty quantification. _Microsc. Microanal._
25, 130–131 (2019). Article ADS Google Scholar * Mani Prudhvi Valleti, S., Vlcek, L., Vasudevan, R. K. & Kalinin, S. V. Inversion of lattice models from the observations of
microscopic degrees of freedom: parameter estimation with uncertainty quantification. Preprint at https://arxiv.org/abs/1909.09244 (2019). * Chakraborty, M. et al. Reconstruction of the
interatomic forces from dynamic scanning transmission electron microscopy data. _J. Appl. Phys._ 127, 224301 (2020). Article ADS Google Scholar * Nobakht, A. Y. et al. Reconstruction of
effective potential from statistical analysis of dynamic trajectories. _AIP Adv_. 10, 065034 (2020). * Schepman, A. M. H., Vandervoort, J. A. P., Kramer, J. & Mellema, J. E. Getting
started with a scanning-transmission electron-microscope coupled to a small computer. _Ultramicroscopy_ 3, 265–269 (1978). Article Google Scholar * Strahm, M. & Butler, J. H. Fast
digital data acquisition and online processing system for an HB5 scanning-transmission electron-microscope. _Rev. Sci. Instrum._ 52, 840–848 (1981). Article ADS Google Scholar * Andree,
P. J., Mellema, J. E. & Ruigrok, R. W. H. Discrimination of heavy and light-elements in a specimen by use of scanning-transmission electron-microscopy. _Ultramicroscopy_ 17, 237–241
(1985). Article Google Scholar * Haider, M., Epstein, A., Jarron, P. & Boulin, C. A versatile, software configurable multichannel stem detector for angle-resolved imaging.
_Ultramicroscopy_ 54, 41–59 (1994). Article Google Scholar * Yang, Y. S. et al. Deciphering chemical order/disorder and material properties at the single-atom level. _Nature_ 542, 75–79
(2017). Article ADS Google Scholar * Kalinin, S. V., S., B. G. & Archibald, R. K. Big–deep–smart data in imaging for guiding materials design. _Nat. Mater._ 14, 973–980 (2015).
Article ADS Google Scholar * Spurgeon, S. R. et al. Towards data-driven next-generation transmission electron microscopy. _Nat. Mater_. 20, 274–279 (2021). * Vasilevsky, N. A., Minnier,
J., Haendel, M. A. & Champieux, R. E. Reproducible and reusable research: are journal data sharing policies meeting the mark? _PeerJ_ 5, e3208 (2017). Article Google Scholar * Molloy,
J. C. The open knowledge foundation: open data means better science. _PLoS Biol._ 9, e1001195 (2011). Article Google Scholar * Woelfle, M., Olliaro, P. & Todd, M. H. Open science is a
research accelerator. _Nat. Chem._ 3, 745–748 (2011). Article Google Scholar * Hanisch, R. J., Gilmore, I. S. & Plant, A. L. Improving reproducibility in research: the role of
measurement science. _J. Res. Natl Inst. Stand. Technol._ 124, 124024 (2019). Article Google Scholar * Blaiszik, B. et al. The materials data facility: data services to advance materials
science research. _JoM_ 68, 2045–2052 (2016). Article Google Scholar * Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation.
_APL Mater_. 1, 011002 (2013). * Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. & Patwardhan, A. EMPIAR: a public archive for raw electron microscopy image data. _Nat.
Methods_ 13, 387–388 (2016). Article Google Scholar * Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. _Nat. Struct. Biol._ 10, 980–980 (2003).
Article Google Scholar * Guo, S. et al. Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution. _J. Electrochem. Soc._ 158, A982–A990 (2011). Article Google
Scholar * Nikiforov, M. P. et al. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. _Nanotechnology_ 22, 055709 (2011). * Kalinin, S. V. et al.
Big, deep, and smart data in scanning probe microscopy. _ACS Nano_ 10, 9068–9086 (2016). Article Google Scholar * Komsa, H. P. et al. Two-dimensional transition metal dichalcogenides
under electron irradiation: defect production and doping. _Phys. Rev. Lett_. 109, 035503 (2012). * Mishra, R., Ishikawa, R., Lupini, A. R. & Pennycook, S. J. Single-atom dynamics in
scanning transmission electron microscopy. _MRS Bull._ 42, 644–652 (2017). Article ADS Google Scholar * Toma Susi, J. C. M. & Kotakoski, J. Manipulating low-dimensional materials down
to the level of single atoms with electron irradiation. _Ultramicroscopy_ 180, 163–172 (2017). Article Google Scholar * Dyck, O. et al. Building structures atom by atom via electron beam
manipulation. _Small_ 14, 1801771 (2018). * Dyck, O., Jesse, S. & Kalinin, S. V. A self-driving microscope and the atomic forge. _MRS Bull._ 44, 669–670 (2019). Article ADS Google
Scholar * Kelley, K. P. et al. Fast scanning probe microscopy via machine learning: non-rectangular scans with compressed sensing and Gaussian process optimization. _Small_ 16, 2002878
(2020). Article MathSciNet Google Scholar * Stevens, A. et al. Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. _Adv. Struct. Chem. Imag_. 1, 10
(2015). * Kovarik, L., Stevens, A., Liyu, A. & Browning, N. D. Implementing an accurate and rapid sparse sampling approach for low-dose atomic resolution STEM imaging. _Appl. Phys.
Lett_. 109, 164102 (2016). * Jesse, S. et al. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. _Nanotechnology_ 29,
255303 (2018). * Gulrajani, I. & Lopez-Paz, D. In search of lost domain generalization. Preprint at https://arxiv.org/abs/2007.01434 (2020). * Kalinin, S. V. et al. Automated and
autonomous experiments in electron and scanning probe microscopy. _ACS Nano_ 15, 12604–12627 (2021). Article Google Scholar * Wilson, A. G., Hu, Z., Salakhutdinov, R. & Xing, E. P. in
_Artificial Intelligence and Statistics_ 370–378 (PMLR, 2021). * Zheng, H. M. et al. Observation of transient structural-transformation dynamics in a Cu2S nanorod. _Science_ 333, 206–209
(2011). Article ADS Google Scholar * Klie, R. F., Ito, Y., Stemmer, S. & Browning, N. S. Observation of oxygen vacancy ordering and segregation in perovskite oxides. _Ultramicroscopy_
86, 289–302 (2001). Article Google Scholar * Jang, J. H. et al. In situ observation of oxygen vacancy dynamics and ordering in the epitaxial LaCoO3 system. _ACS Nano_ 11, 6942–6949
(2017). Article Google Scholar * Hoehl, D. et al. Temperature-dependence of electron-beam induced epitaxial crystallization of silicon. _Phys. Status Solidi A_ 122, K35–K37 (1990). Article
ADS Google Scholar * Jencic, I., Bench, M. W., Robertson, I. M. & Kirk, M. A. Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. _J. Appl.
Phys._ 78, 974–982 (1995). Article ADS Google Scholar * Remeika, M. & Bezryadin, A. Sub-10 nanometre fabrication: molecular templating, electron-beam sculpting and crystallization of
metallic nanowires. _Nanotechnology_ 16, 1172–1176 (2005). Article ADS Google Scholar * Bae, I. T., Zhang, Y. W., Weber, W. J., Higuchi, M. & Giannuzzi, L. A. Electron-beam induced
recrystallization in amorphous apatite. _Appl. Phys. Lett_. 90, 021912 (2007). * Zhang, Y. et al. Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3.
_Phys. Rev. B_ 72, 094112 (2005). * Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching Silica’s Dance. _Science_ 342, 224–227 (2013). Article ADS
Google Scholar * Kurasch, S. et al. Atom-by-atom observation of grain boundary migration in graphene. _Nano Lett._ 12, 3168–3173 (2012). Article ADS Google Scholar * Yang, Z. Q. et al.
Direct observation of atomic dynamics and silicon doping at a topological defect in graphene. _Angew. Chem. Int. Edit._ 53, 8908–8912 (2014). Article Google Scholar * Krasheninnikov, A. V.
& Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. _Nat. Mater._ 6, 723–733 (2007). Article ADS Google Scholar * Lingerfelt, D. B. et al.
Nonadiabatic effects on defect diffusion in silicon-doped nanographenes. _Nano Lett._ 21, 236–242 (2021). Article ADS Google Scholar * Susi, T., Meyer, J. C. & Kotakoski, J.
Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. _Nat. Rev. Phys._ 1, 397–405 (2019). Article Google Scholar * Krasheninnikov, A. V. &
Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. _J. Appl. Phys._ 107, 071301 (2010). * Egerton, R. F. Radiation damage to organic and inorganic
specimens in the TEM. _Micron_ 119, 72–87 (2019). Article Google Scholar * Jesse, S. et al. Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic
plane precision. _Small_ 11, 5895–5900 (2015). Article Google Scholar * Mousavi, S. S., Schukat, M. & Howley, E. in _Proc. of SAI Intelligent Systems Conf._ 426–440 (Springer, 2021). *
Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. _Nature_ 588, 604–609 (2020). Article ADS Google Scholar * Wagner, T. & Raunser, S.
The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows. _Commun. Biol._ 3, 61 (2020). Article Google Scholar * Kalinin, S. V., Dyck,
O., Jesse, S. & Ziatdinov, M. Exploring order parameters and dynamic processes in disordered systems via variational autoencoders. _Sci. Adv._ 7, eabd5084 (2021). Article ADS Google
Scholar Download references ACKNOWLEDGEMENTS This work is based upon work supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences
and Engineering Division (S.V.K., M.P.O. and A.R.L.) and was performed and partially supported (M.Z.) at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a US
Department of Energy, Office of Science User Facility. V.G. acknowledges the support of the European Union Horizon 2020 Research and Innovation Programme under grant agreement no. 766970
Q-SORT (H2020-FETOPEN-1-2016-2017), no. 964591 Smart-electrons (H2020-FETOPEN-1-2016-2017) and no. 101035013 MINEON (H2020-FETOPEN-03-2018-2019-2020 – FET Innovation Launchpad). SuperSTEM
(D.K.) is the UK National Facility for Advanced Electron Microscopy funded by the Engineering and Physical Sciences Research Council (EPSRC). P.M.V. acknowledges support from DOE BES
(DE-FG02-08ER46547). G.G.D.H. and X.L. acknowledge support from Brandeis NSF MRSEC, Bioinspired Soft Materials, DMR-2011846. Work at the Molecular Foundry (C.O.) was supported by the Office
of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. E.S. and M.K.Y.C. acknowledges support from the Center for Nanoscale
Materials (DOE SUF) under contract no. DE-AC02-06CH11357. C.O. and M.K.Y.C. acknowledge support from DOE Early Career Research Awards. N.S. acknowledges support from the JSPS KAKENHI (grants
20H05659 and 19H05788). J.E. acknowledges the support of the Australian Research Council Discovery Project (grants DP150104483 and DP160104679). The authors are extremely grateful to K.
More (from CNMS) for careful reading and editing of the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak
Ridge, TN, USA Sergei V. Kalinin, Andrew R. Lupini, Mark P. Oxley & Maxim Ziatdinov * NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Colin Ophus *
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA Paul M. Voyles * Electron Microscopy Center, EMPA – Swiss Federal Laboratories for
Materials Science and Technology, Dubendorf, Switzerland Rolf Erni * SuperSTEM laboratory, Sci-Tech Daresbury Campus, Daresbury, UK Demie Kepaptsoglou * Department of Physics, University of
York, York, UK Demie Kepaptsoglou * CNR-NANO, Modena, Italy Vincenzo Grillo * Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA Eric Schwenker & Maria K. Y.
Chan * Materials Science and Engineering Department, Northwestern University, Evanston, IL, USA Eric Schwenker * Monash Centre for Electron Microscopy and Department of Materials Science and
Engineering, Monash University, Clayton, Victoria, Australia Joanne Etheridge * Department of Chemistry, Brandeis University, Waltham, MA, USA Xiang Li & Grace G. D. Han * Computational
Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA Maxim Ziatdinov * Institute of Engineering Innovation, School of Engineering, The University of Tokyo,
Tokyo, Japan Naoya Shibata * Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA Stephen J. Pennycook * School of Physical Sciences and CAS Key
Laboratory of Vacuum Sciences, University of Chinese Academy of Sciences, Beijing, China Stephen J. Pennycook Authors * Sergei V. Kalinin View author publications You can also search for
this author inPubMed Google Scholar * Colin Ophus View author publications You can also search for this author inPubMed Google Scholar * Paul M. Voyles View author publications You can also
search for this author inPubMed Google Scholar * Rolf Erni View author publications You can also search for this author inPubMed Google Scholar * Demie Kepaptsoglou View author publications
You can also search for this author inPubMed Google Scholar * Vincenzo Grillo View author publications You can also search for this author inPubMed Google Scholar * Andrew R. Lupini View
author publications You can also search for this author inPubMed Google Scholar * Mark P. Oxley View author publications You can also search for this author inPubMed Google Scholar * Eric
Schwenker View author publications You can also search for this author inPubMed Google Scholar * Maria K. Y. Chan View author publications You can also search for this author inPubMed Google
Scholar * Joanne Etheridge View author publications You can also search for this author inPubMed Google Scholar * Xiang Li View author publications You can also search for this author
inPubMed Google Scholar * Grace G. D. Han View author publications You can also search for this author inPubMed Google Scholar * Maxim Ziatdinov View author publications You can also search
for this author inPubMed Google Scholar * Naoya Shibata View author publications You can also search for this author inPubMed Google Scholar * Stephen J. Pennycook View author publications
You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Introduction (S.J.P. and M.P.O.); Experimentation (J.E., C.O., A.R.L., D.K., R.E. and V.G.); Results (P.M.V., X.L.
and G.G.D.H.); Applications (N.S., E.S. and M.K.Y.C.); Reproducibility and data deposition (C.O. and M.Z.); Limitations and optimizations (C.O. and S.V.K.); Outlook (C.O., M.Z. and S.V.K.);
Overview of the Primer (S.V.K.). CORRESPONDING AUTHOR Correspondence to Sergei V. Kalinin. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW
PEER REVIEW INFORMATION _Nature Reviews Methods Primers_ thanks Jamie Warner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL
INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS ABTEM:
https://doi.org/10.12688/openreseurope.13015.1 ATOMAI: https://github.com/pycroscopy/atomai ESPRIT FROM BRUKER:
https://www.bruker.com/en/products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-family.html GATAN MICROSCOPY SUITE:
https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software GITHUB: https://github.com/ HYPERSPY: https://doi.org/10.5281/zenodo.592838 IMAGEJ: https://imagej.nih.gov/ij/
LABVIEW: https://www.ni.com/en-us/shop/labview.html MATLAB: https://www.mathworks.com/products/matlab.html OCTAVE: https://www.gnu.org/software/octave/index PYTEMLIB:
https://github.com/pycroscopy/pyTEMlib STEMTOOLS TOOLKIT: https://github.com/pycroscopy/stemtool VELOX FROM THERMO FISHER SCIENTIFIC:
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/velox-software.html SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION GLOSSARY * Aberration An
imperfection in the electron optics of a microscope. * Coherent imaging Measurements where the local contrast is dominated by the phase alignment of the electron wavefronts: constructive
interference (in phase) leads to higher signals and destructive inference (out of phase) leads to lower signals. * Incoherent imaging When the coherence length of the electron waves is
smaller than the resolution element of the measurement, the total signal is given incoherently by the sum of individual electron wavefunction intensities, and the relative phase of these
wavefronts does not affect the measured intensity. * Contrast The spatial variation of intensity. * Z-contrast imaging A scanning transmission electron microscopy-high-angle annular
dark-field imaging method, where the image contrast scales roughly monotonically with the atomic number _Z_ of the atom(s) being imaged, approximately as _Z_1.7. * Ptychography A method of
generating images from many coherent diffraction patterns formed at different probe positions in the STEM. It is also widely used in X-ray scattering experiments. * Tilt series tomography By
tilting the specimen and recording projected images at different angles, computer algorithms can be used to reconstruct the 3D sample structure. * Transmission modes Imaging modes in
electron microscopy where the electron beam passes through the specimen. * Differential phase contrast A method that measures the change in the convergent beam diffraction pattern as a
function of probe position using either a segmented or a pixelated detector. These changes can be related to the local change in the sample’s potential and corresponding fields. * Phonons A
quantized collective vibration of atoms in a crystalline sample, which can be excited by the electron beam and characterized by scanning transmission electron microscopy-electron energy loss
spectroscopy or diffraction measurements. * Plasmons A quantized collective oscillation of electrons relative to the fixed ions in a sample, which can be excited by the electron beam and
characterized by scanning transmission electron microscopy-electron energy loss spectroscopy. * Core-loss edges Excitation of inner-shell electrons (ionization) by the electron beam, where
the energy loss can be probed by scanning transmission electron microscopy-electron energy loss spectroscopy for features referred to as ‘edges’. * Dynamical scattering A term commonly used
in electron microscopy to describe the multiple scattering of the incident electron probe as it propagates through the specimen. * Electron optical elements Electromagnetic lenses used to
focus or otherwise shape the electron beam. * Electron holography A technique for viewing the phase of the exit surface wavefunction using the interference of a scattered and unscattered
electron beam. * Azimuthal phase gradient (APG). A wavefunction where the phase is linearly proportional to the angle in polar coordinates, and the total phase shift is an integer multiple
of 2π for each revolution (see orbital angular momentum). * Orbital angular momentum (OAM). Orbital angular momenta are quanta given by the number of multiples of 2π in the phase of an
electron beam, per angular revolution in polar coordinates (see azimuthal phase gradient). * Electron energy loss near edge structure The intensity variation of the electron energy loss
spectroscopy signal as a function of energy loss near the onset of the core-loss signal. * L23 ratio The ratio of the L3 to L2 peaks formed by the transition of the 2_p_3/2 and 2_p_1/2
electrons to empty states. * Dark count rate (_D_). This is the mean value of a scanning transmission electron microscopy image acquired with the beam blanked preferably near the gun by, for
example, closing the gun vacuum valve. * Gain (_G_). Adjustment to ensure that the measured signal covers the optimal range of the amplifier. * Faraday cup A conductive cup that can capture
charged free particles, with which the electron beam current can be estimated by integrating the recorded signal. * Residual The difference between the fitted image and the experimental
image after atom location. * Latent variables A variable that is not directly observable, often obtained using variational auto encoders. * Latent spaces A vector space spanned by the latent
variables. * Evidence lower boundary The lower bound of the probability of observing a particular result for a given model. * Penrose structures Local structural units that, when displaced
and rotated, can fully tile space, but do not have periodic translational symmetry. Such atomic structures can be found in quasicrystals. * Electron beam irradiation This occurs when an
electron beam induces changes in a specimen due to energy transfer, often called beam damage. * Dwell time The time period of the data collection in each pixel. * Inferential biases The
assumptions and constraints implemented in the structure of the network, loss function or training set that impose specific limitations on the outputs. * Exploration Uncertainty
minimization. * Exploitation Balancing exploration and pursuing target functionalities. * Out-of-distribution data When observational conditions change between experiments, precluding a
direct comparison of data between experiments. * Distribution shift In machine learning, this shift occurs when training and test sets do not come from the same distribution. * Knock-on
damage thresholds The energy of the incident electron required to remove an atom from the crystal lattice. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS
ARTICLE Kalinin, S.V., Ophus, C., Voyles, P.M. _et al._ Machine learning in scanning transmission electron microscopy. _Nat Rev Methods Primers_ 2, 11 (2022).
https://doi.org/10.1038/s43586-022-00095-w Download citation * Accepted: 14 January 2022 * Published: 03 March 2022 * DOI: https://doi.org/10.1038/s43586-022-00095-w SHARE THIS ARTICLE
Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided
by the Springer Nature SharedIt content-sharing initiative