Active spatial control of plasmonic fields

Active spatial control of plasmonic fields

Play all audios:

Loading...

ABSTRACT The field of plasmonics1 offers a route to control light fields with metallic nanostructures through the excitation of surface plasmon polaritons2. These surface waves, bound to a


metal dielectric interface, can tightly confine electromagnetic energy3. Active control over surface plasmon polaritons has potential for applications in sensing4, photovoltaics5, quantum


communication6,7, nanocircuitry8,9, metamaterials10,11 and super-resolution microscopy12. We achieve here active control of plasmonic fields using a digital spatial light modulator.


Optimizing the plasmonic phases through feedback, we focus surface plasmon polaritons at a freely prechosen point on the surface of a nanohole array. Digital addressing and scanning of


surface plasmon polaritons without mechanical motion may enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS TUNABLE PHOTON-INDUCED SPATIAL MODULATION OF FREE ELECTRONS Article 26 January 2023 DYNAMIC CONTROL AND MANIPULATION OF NEAR-FIELDS USING


DIRECT FEEDBACK Article Open access 24 October 2024 DETECTION OF A PLASMON-POLARITON QUANTUM WAVE PACKET Article 13 February 2023 REFERENCES * Barnes, W. L., Dereux, A. & Ebbesen, T. W.


Surface plasmon subwavelength optics. _Nature_ 424, 824–830 (2003). Article  ADS  Google Scholar  * Polman, A. Applied physics: plasmonics applied. _Science_ 322, 5903, 868–869 (2008).


Article  Google Scholar  * Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. _Nature Mater._ 9, 193–204 (2010). Article  ADS  Google Scholar  * Prodan, E.,


Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. _Science_ 302, 419–422 (2003). Article  ADS  Google Scholar  *


Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. _Nature Mater._ 9, 205–213 (2010). Article  ADS  Google Scholar  * Altewischer, E., van Exter, M. P. &


Woerdman, J. P. Plasmon-assisted transmission of entangled photons. _Nature_ 418, 304–306 (2002). Article  ADS  Google Scholar  * Akimov, A. V. _et al._ Generation of single optical plasmons


in metallic nanowires coupled to quantum dots. _Nature_ 450, 402–406 (2007). Article  ADS  Google Scholar  * Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface-plasmon circuitry.


_Phys. Today_ 61, 44–50 (2008). Article  ADS  Google Scholar  * Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. _Science_ 317, 1698–1702


(2007). Article  ADS  Google Scholar  * Liu, N. _et al._ Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. _Nature Mater._ 8, 758–762 (2009). Article


  ADS  Google Scholar  * Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. _Science_ 328, 337–339 (2010).


Article  ADS  Google Scholar  * Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. _Science_ 308, 534–537 (2005). Article  ADS 


Google Scholar  * Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. _Phys. Rev. Lett._ 75, 4206–4209 (1995). Article  ADS  Google Scholar


  * Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. _Opt. Express_ 16, 67–80 (2008). Article  ADS  Google Scholar 


* Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. _Nature Photon._ 4, 388–394 (2010). Article  ADS  Google Scholar  * Dionne,


J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. _Nano Lett._ 9, 897–902 (2009). Article  ADS  Google Scholar  *


MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. _Nature Photon._ 3, 55–58 (2009). Article  ADS  Google Scholar  * Utikal, T., Stockman, M.


I., Heberle, A. P., Lippitz, M. & Giessen, H. All-optical control of the ultrafast dynamics of a hybrid plasmonic system. _Phys. Rev. Lett._ 104, 113903 (2010). Article  ADS  Google


Scholar  * Temnov, V. V. _et al._ Active magneto-plasmonics in hybrid metal-ferromagnet structures. _Nature Photon._ 4, 107–111 (2010). Article  ADS  Google Scholar  * Durach, M., Rusina,


A., Stockman, M. I. & Nelson, K. Toward full spatiotemporal control on the nanoscale. _Nano Lett._ 7, 3145–3149 (2007). Article  ADS  Google Scholar  * Aeschlimann, M. _et al._ Adaptive


subwavelength control of nano-optical fields. _Nature_ 446, 301–304 (2007). Article  ADS  Google Scholar  * Li, X. & Stockman, M. I. Highly efficient spatiotemporal coherent control in


nanoplasmonics on a nanometer-femtosecond scale by time reversal. _Phys. Rev. B_ 77, 195109 (2008). Article  ADS  Google Scholar  * Volpe, G., Cherukulappurath, S., Parramon, R. J.,


Molina-Terriza, G. & Quidant, R. Controlling the optical near field of nanoantennas with spatial phase-shaped beams. _Nano Lett._ 9, 3608–3611 (2009). Article  ADS  Google Scholar  *


Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. _Rev. Mod. Phys._ 82, 729–787 (2010). Article  ADS  Google Scholar  *


Sentenac, A. & Chaumet, P. C. Subdiffraction light focusing on a grating substrate. _Phys. Rev. Lett._ 101, 013901 (2008). Article  ADS  Google Scholar  * Bartal, G., Lerosey, G. &


Zhang, X. Subwavelength dynamic focusing in plasmonic nanostructures using time reversal. _Phys. Rev. B_, 79, 201103 (2009). Article  ADS  Google Scholar  * Johnson, P. B. & Christy, R.


W. Optical constants of the noble metals. _Phys. Rev. B_ 6, 4370–4379 (1972). Article  ADS  Google Scholar  * Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at


metallo-dielectric interfaces. _Nature Phys._ 2, 551–556 (2006). Article  ADS  Google Scholar  * Devaux, E., Ebbesen, T. W., Weeber, J. C. & Dereux, A. Launching and decoupling surface


plasmons via micro gratings. _Appl. Phys. Lett._, 83, 4936–4938 (2003). Article  ADS  Google Scholar  * Popoff, S. M. _et al._ Measuring the transmission matrix in optics: an approach to the


study and control of light propagation in disordered media. _Phys. Rev. Lett._ 104, 100601 (2010). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank E.


van Putten and J. Cesario for stimulating and helpful discussions, and H. Zeijlermaker for sample fabrication. This work is part of the research programme of the ‘Stichting voor Fundamenteel


Onderzoek der Materie’, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * FOM-Institute for Atomic


and Molecular Physics AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands Bergin Gjonaj, Jochen Aulbach, Patrick M. Johnson, L. Kuipers & Ad Lagendijk * Complex Photonic


Systems, Faculty of Science and Technology, and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Allard P. Mosk Authors * Bergin Gjonaj


View author publications You can also search for this author inPubMed Google Scholar * Jochen Aulbach View author publications You can also search for this author inPubMed Google Scholar *


Patrick M. Johnson View author publications You can also search for this author inPubMed Google Scholar * Allard P. Mosk View author publications You can also search for this author inPubMed


 Google Scholar * L. Kuipers View author publications You can also search for this author inPubMed Google Scholar * Ad Lagendijk View author publications You can also search for this author


inPubMed Google Scholar CONTRIBUTIONS B.G. was the primary researcher on this project, developing and building the set-up, carrying out all experiments and analysis, and writing the paper.


All authors made essential contributions to the project and take full responsibility for the results presented. CORRESPONDING AUTHOR Correspondence to Bergin Gjonaj. ETHICS DECLARATIONS


COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary information (PDF 287 kb) RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Gjonaj, B., Aulbach, J., Johnson, P. _et al._ Active spatial control of plasmonic fields. _Nature Photon_ 5, 360–363 (2011).


https://doi.org/10.1038/nphoton.2011.57 Download citation * Received: 21 November 2010 * Accepted: 01 April 2011 * Published: 22 May 2011 * Issue Date: June 2011 * DOI:


https://doi.org/10.1038/nphoton.2011.57 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative