Mapping the energy landscape for second-stage folding of a single membrane protein

Mapping the energy landscape for second-stage folding of a single membrane protein

Play all audios:

Loading...

ABSTRACT Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that


single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find


that a transmembrane helix protein, _Escherichia coli_ rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical


tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability


(Δ_G_ = 6.5 _k_B_T_) but a large unfolding barrier (21.3 _k_B_T_) that can maintain the protein in a folded state for long periods of time (_t_1/2 ∼3.5 h). The observed energy landscape may


have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only


$21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MEMBRANE-MEDIATED PROTEIN


INTERACTIONS DRIVE MEMBRANE PROTEIN ORGANIZATION Article Open access 30 November 2022 FREE ENERGIES OF MEMBRANE STALK FORMATION FROM A LIPIDOMICS PERSPECTIVE Article Open access 15 November


2021 SMALL-RESIDUE PACKING MOTIFS MODULATE THE STRUCTURE AND FUNCTION OF A MINIMAL DE NOVO MEMBRANE PROTEIN Article Open access 16 September 2020 REFERENCES * Engelman, D.M. et al. Membrane


protein folding: beyond the two stage model. _FEBS Lett._ 555, 122–125 (2003). Article  CAS  PubMed  Google Scholar  * Bowie, J.U. Solving the membrane protein folding problem. _Nature_ 438,


581–589 (2005). Article  CAS  PubMed  Google Scholar  * White, S.H. & von Heijne, G. How translocons select transmembrane helices. _Annu. Rev. Biophys._ 37, 23–42 (2008). Article  CAS 


PubMed  Google Scholar  * Hong, H., Blois, T.M., Cao, Z. & Bowie, J.U. Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. _Proc. Natl. Acad.


Sci. USA_ 107, 19802–19807 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chang, Y.C. & Bowie, J.U. Measuring membrane protein stability under native conditions. _Proc.


Natl. Acad. Sci. USA_ 111, 219–224 (2014). Article  CAS  PubMed  Google Scholar  * Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. _Science_ 288, 143–146 (2000).


Article  CAS  PubMed  Google Scholar  * Kedrov, A., Janovjak, H., Sapra, K.T. & Muller, D.J. Deciphering molecular interactions of native membrane proteins by single-molecule force


spectroscopy. _Annu. Rev. Biophys. Biomol. Struct._ 36, 233–260 (2007). Article  CAS  PubMed  Google Scholar  * Engel, A. & Gaub, H.E. Structure and mechanics of membrane proteins.


_Annu. Rev. Biochem._ 77, 127–148 (2008). Article  CAS  PubMed  Google Scholar  * Zocher, M. et al. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding,


stability, and interactions of native membrane proteins. _ACS Nano_ 6, 961–971 (2012). Article  CAS  PubMed  Google Scholar  * Cecconi, C., Shank, E.A., Bustamante, C. & Marqusee, S.


Direct observation of the three-state folding of a single protein molecule. _Science_ 309, 2057–2060 (2005). Article  CAS  PubMed  Google Scholar  * Shank, E.A., Cecconi, C., Dill, J.W.,


Marqusee, S. & Bustamante, C. The folding cooperativity of a protein is controlled by its chain topology. _Nature_ 465, 637–640 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Faham, S. & Bowie, J.U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. _J. Mol. Biol._ 316, 1–6


(2002). Article  CAS  PubMed  Google Scholar  * Joh, N.H. et al. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. _Nature_ 453, 1266–1270 (2008).


CAS  PubMed  Google Scholar  * Dürr, U.H., Gildenberg, M. & Ramamoorthy, A. The magic of bicelles lights up membrane protein structure. _Chem. Rev._ 112, 6054–6074 (2012). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Wang, Y.C., Zhang, Y.J. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. _Nature_ 444, 179–183 (2006). Article  CAS


  PubMed  Google Scholar  * Wu, Z.R. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. _Nat. Struct. Mol. Biol._ 13,


1084–1091 (2006). Article  CAS  PubMed  Google Scholar  * Ben-Shem, A., Fass, D. & Bibi, E. Structural basis for intramembrane proteolysis by rhomboid serine proteases. _Proc. Natl.


Acad. Sci. USA_ 104, 462–466 (2007). Article  CAS  PubMed  Google Scholar  * Vinothkumar, K.R. Structure of rhomboid protease in a lipid environment. _J. Mol. Biol._ 407, 232–247 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Lemberg, M.K. & Freeman, M. Cutting proteins within lipid bilayers: rhomboid structure and mechanism. _Mol. Cell_ 28, 930–940


(2007). Article  CAS  PubMed  Google Scholar  * Freeman, M. Rhomboid proteases and their biological functions. _Annu. Rev. Genet._ 42, 191–210 (2008). Article  CAS  PubMed  Google Scholar  *


Ha, Y., Akiyama, Y. & Xue, Y. Structure and mechanism of rhomboid protease. _J. Biol. Chem._ 288, 15430–15436 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Vinothkumar, K.R. & Freeman, M. Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. _Curr. Opin. Struct. Biol._ 23, 851–858 (2013). Article  CAS 


PubMed  Google Scholar  * Lemberg, M.K. Sampling the membrane: function of rhomboid-family proteins. _Trends Cell Biol._ 23, 210–217 (2013). Article  CAS  PubMed  Google Scholar  * Baker,


R.P. & Urban, S. Architectural and thermodynamic principles underlying intramembrane protease function. _Nat. Chem. Biol._ 8, 759–768 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Paslawski, W. et al. Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops. _Proc. Natl. Acad. Sci. USA_ 112,


7978–7983 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cecconi, C., Shank, E.A., Marqusee, S. & Bustamante, C. in _DNA Nanotechnology: Methods and Protocols_ 1st edn.


Vol. 749 (eds. Zuccheri, G. & Samorì, B.) 255–271 (Humana Press, 2011). * Min, D. et al. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a


force-generating mechanism. _Nat. Commun._ 4, 1705–1714 (2013). Article  PubMed  CAS  Google Scholar  * Bae, W. et al. Programmed folding of DNA origami structures through single-molecule


force control. _Nat. Commun._ 5, 5654–5661 (2014). Article  CAS  PubMed  Google Scholar  * Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the


molecular level. _Biophys. J._ 82, 3314–3329 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Saleh, O.A., Allemand, J.F., Croquette, V. & Bensimon, D. Single-molecule


manipulation measurements of DNA transport proteins. _ChemPhysChem_ 6, 813–818 (2005). Article  CAS  PubMed  Google Scholar  * Kim, K. & Saleh, O.A. A high-resolution magnetic tweezer


for single-molecule measurements. _Nucleic Acids Res._ 37, 136–142 (2009). Article  CAS  Google Scholar  * Lipfert, J., Hao, X.M. & Dekker, N.H. Quantitative modeling and optimization of


magnetic tweezers. _Biophys. J._ 96, 5040–5049 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. _Annu.


Rev. Biophys._ 41, 453–472 (2012). Article  CAS  PubMed  Google Scholar  * Greenleaf, W.J., Frieda, K.L., Foster, D.A.N., Woodside, M.T. & Block, S.M. Direct observation of hierarchical


folding in single riboswitch aptamers. _Science_ 319, 630–633 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J.A. &


Fernandez, J.M. Direct observation of disulfide isomerization in a single protein. _Nat. Chem._ 3, 882–887 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stigler, J.,


Ziegler, F., Gieseke, A., Gebhardt, J.C.M. & Rief, M. The complex folding network of single calmodulin molecules. _Science_ 334, 512–516 (2011). Article  CAS  PubMed  Google Scholar  *


Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: A comparison. _Proc. Natl. Acad. Sci. USA_ 96, 3694–3699 (1999). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Liphardt, J., Onoa, B., Smith, S.B., Tinoco, I. Jr. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. _Science_ 292, 733–737 (2001).


Article  CAS  PubMed  Google Scholar  * Beaugrand, M. et al. Lipid concentration and molar ratio boundaries for the use of isotropic bicelles. _Langmuir_ 30, 6162–6170 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Curnow, P. & Booth, P.J. Combined kinetic and thermodynamic analysis of α-helical membrane protein unfolding. _Proc. Natl. Acad. Sci. USA_ 104,


18970–18975 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Otzen, D.E. Mapping the folding pathway of the transmembrane protein DsbB by protein engineering. _Protein Eng.


Des. Sel._ 24, 139–149 (2011). Article  CAS  PubMed  Google Scholar  * Watters, A.L. et al. The highly cooperative folding of small naturally occurring proteins is likely the result of


natural selection. _Cell_ 128, 613–624 (2007). Article  CAS  PubMed  Google Scholar  * Cymer, F., von Heijne, G. & White, S.H. Mechanisms of integral membrane protein insertion and


folding. _J. Mol. Biol._ 427, 999–1022 (2015). Article  CAS  PubMed  Google Scholar  * Kim, S.J. & Skach, W.R. Mechanisms of CFTR folding at the endoplasmic reticulum. _Front.


Pharmacol._ 3, 201 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Curnow, P. et al. Stable folding core in the folding transition state of an α-helical integral membrane protein.


_Proc. Natl. Acad. Sci. USA_ 108, 14133–14138 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jefferson, R.E., Blois, T.M. & Bowie, J.U. Membrane proteins can have high


kinetic stability. _J. Am. Chem. Soc._ 135, 15183–15190 (2013). Article  CAS  PubMed  Google Scholar  * Otzen, D.E. Folding of DsbB in mixed micelles: a kinetic analysis of the stability of


a bacterial membrane protein. _J. Mol. Biol._ 330, 641–649 (2003). Article  CAS  PubMed  Google Scholar  * Kim, B.L., Schafer, N.P. & Wolynes, P.G. Predictive energy landscapes for


folding α-helical transmembrane proteins. _Proc. Natl. Acad. Sci. USA_ 111, 11031–11036 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Urban, S. & Wolfe, M.S.


Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. _Proc. Natl. Acad. Sci. USA_ 102, 1883–1888 (2005). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Faham, S., Ujwal, R., Abramson, J. & Bowie, J.U. in _Membrane Protein Crystallization_ 1st edn. Vol. 63 (eds. DeLucas, L.J.) 109–125 (Academic


Press, 2009). * Ujwal, R. & Bowie, J.U. Crystallizing membrane proteins using lipidic bicelles. _Methods_ 55, 337–341 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Whitelegge, J.P. et al. Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. _Proc. Natl. Acad. Sci. USA_ 96, 10695–10698 (1999).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Kessler, D.A. & Rabin, Y. Distribution functions for filaments under tension. _J. Chem. Phys._ 121, 1155–1164 (2004). Article  CAS


  PubMed  Google Scholar  * Schwaiger, I., Sattler, C., Hostetter, D.R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. _Nat. Mater._ 1, 232–235 (2002). Article 


CAS  PubMed  Google Scholar  * Schuler, B., Lipman, E.A. & Eaton, W.A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. _Nature_ 419,


743–747 (2002). Article  CAS  PubMed  Google Scholar  * Yang, W.Y. & Gruebele, M. Folding at the speed limit. _Nature_ 423, 193–197 (2003). Article  CAS  PubMed  Google Scholar  *


Rhoades, E., Cohen, M., Schuler, B. & Haran, G. Two-state folding observed in individual protein molecules. _J. Am. Chem. Soc._ 126, 14686–14687 (2004). Article  CAS  PubMed  Google


Scholar  * Kubelka, J., Hofrichter, J. & Eaton, W.A. The protein folding 'speed limit'. _Curr. Opin. Struct. Biol._ 14, 76–88 (2004). Article  CAS  PubMed  Google Scholar  *


Chung, H.S., Louis, J.M. & Eaton, W.A. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. _Proc.


Natl. Acad. Sci. USA_ 106, 11837–11844 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gebhardt, J.C.M., Bornschlogla, T. & Rief, M. Full distance-resolved folding energy


landscape of one single protein molecule. _Proc. Natl. Acad. Sci. USA_ 107, 2013–2018 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This


work was supported by the National Creative Research Initiative Program (Center for Single-Molecule Systems Biology to T.-Y.Y.) funded by the National Research Foundation of Korea and


Marine Biotechnology Program (20150220 to T.-Y.Y.) funded by the Ministry of Oceans and Fisheries of Korea, and supported by US National Institutes of Health grant 2R01GM063919 to J.U.B.


AUTHOR INFORMATION Author notes * Duyoung Min Present address: Present address: Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California, USA.,


* Duyoung Min and Robert E Jefferson: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * National Creative Research Initiative Center for Single-Molecule Systems


Biology, KAIST, Daejeon, South Korea Duyoung Min & Tae-Young Yoon * Department of Physics, KAIST, Daejeon, South Korea Duyoung Min & Tae-Young Yoon * Department of Chemistry and


Biochemistry, University of California–Los Angeles, Los Angeles, California, USA Robert E Jefferson & James U Bowie Authors * Duyoung Min View author publications You can also search for


this author inPubMed Google Scholar * Robert E Jefferson View author publications You can also search for this author inPubMed Google Scholar * James U Bowie View author publications You


can also search for this author inPubMed Google Scholar * Tae-Young Yoon View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.M., R.E.J.,


J.U.B. and T.-Y.Y. designed the experiments. R.E.J. expressed and purified proteins. D.M. prepared the DNA-protein hybrid sample and performed the magnetic tweezers experiments. All of the


authors analyzed the data and contributed to writing of the manuscript. CORRESPONDING AUTHORS Correspondence to James U Bowie or Tae-Young Yoon. ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–3.


(PDF 2696 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Min, D., Jefferson, R., Bowie, J. _et al._ Mapping the energy landscape for second-stage


folding of a single membrane protein. _Nat Chem Biol_ 11, 981–987 (2015). https://doi.org/10.1038/nchembio.1939 Download citation * Received: 13 July 2015 * Accepted: 14 September 2015 *


Published: 19 October 2015 * Issue Date: December 2015 * DOI: https://doi.org/10.1038/nchembio.1939 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative