Molecule-based nonlinear optical switch with highly tunable on-off temperature using a dual solid solution approach

Molecule-based nonlinear optical switch with highly tunable on-off temperature using a dual solid solution approach

Play all audios:

Loading...

ABSTRACT Nonlinear optical switches that reversibly convert between on/off states by thermal stimuli are promising for applications in the fields of photoelectronics and photonics. Currently


one main drawback for practical application lies in the control of their switch temperature, especially for the temperature range near room temperature. By mixed melting treatment, here we


describe an alloy-like nonlinear optical switch with tunable switch temperature via a dual solid solution approach within the coordination polymer system. We initially prepare a coordination


polymer (_i_-PrNHMe2)[Cd(SCN)3], which functions as a high-contrast thermoresponsive nonlinear optical switch originating from a phase transition at around 328 K. Furthermore, by taking


advantage of a synergistic dual solid solution effect, the melt mixing of it with its analogue (MeNHEt2)[Cd(SCN)3], which features an unequal anionic chain templated by an isomeric ammonium,


can afford coordination polymer solid solutions with switch temperatures that are tunable in a range of 273–328 K merely by varying the component ratio. SIMILAR CONTENT BEING VIEWED BY


OTHERS PREPARATION OF PHOTONIC MOLECULAR TRAINS VIA SOFT-CRYSTAL POLYMERIZATION OF LANTHANIDE COMPLEXES Article Open access 05 July 2022 TERNARY MOLECULAR SWITCHING IN A SINGLE-CRYSTAL


OPTICAL ACTUATOR WITH CORRELATED CRYSTAL STRAIN Article Open access 11 February 2025 Π-CONJUGATED POLYMERS BASED ON FLEXIBLE HETEROATOM-CONTAINING COMPLEXES FOR PRECISE CONTROL OF OPTICAL


FUNCTIONS Article 07 April 2023 INTRODUCTION Nonlinear optical (NLO) materials are of great importance due to their pivotal role in the fields of photoelectronics and photonics. In recent


years, the research on NLO switches, of which quadratic NLO effect such as second-harmonic generation (SHG) can be on-off switched under external physical stimuli, have aroused intense


interest1,2,3,4,5,6,7,8,9. So far, one most feasible method is to tweak the conformation or orientation of NLO-chromophore molecules in the crystal structures by thermal stimulus, with a


mechanism related to structural phase transition, which can realign the NLO-active moieties to alter the SHG signal, especially those with the transition from a noncentrosymmetric space


group to a centrosymmetric one2,10,11,12,13,14,15,16,17,18,19,20. Following this strategy, the thermoresponsive NLO switches within the molecule-based systems, typically represented by the


coordination polymers (CPs), can be achieved with many advantages such as the designable and flexible structures, the relatively mild preparation condition as well as appropriate on/off


contrast of SHG signal. Nevertheless, most of the reported thermoresponsive NLO switches do not have the tunability on the regulation of their on-off temperatures (_T_S), especially for the


temperature range above and below the room temperature, which is a key issue for practical application. To resolve the above issue, the formation of CP solid solutions or alloys that retain


a similar structure to the NLO-switchable parent phase may be an efficient and convenient method, of which the _T_S could be finely tuned by the varied ratio of such binary system. According


to the similarity-intermiscibility theory, one key requirement for the syntheses of CP solid solution is that the two mixed CPs should be structurally similar, which avoids a notable


increase of the crystal cohesive energy. So, from the view of thermodynamics, entropy increase usually is a driving force for the formation of CP solid solutions. On the other hand, as is


widely used, one most effective procedure for the preparation of solid solution is via the mixed melting-cooling treatment. However, by comparison with metal alloys and more conventional


materials, there have been few reports on the preparations of CP-based solid solutions via mixed melting, mainly owing to the near-ubiquitous irreversible thermal decomposition of CPs upon


heating to moderate temperatures21,22,23. To find a CP structure that can be melted before decomposition, we noticed that low-dimensional negatively charged CPs templated with


charge-balanced guest cations may be good candidates24,25,26. Meanwhile, the polar guest cations may also function as second-order NLO chromophores. Up to now, the reported CP solid


solutions are still scarce, usually realized through the one-pot reaction in solution or mechanical grinding, using a simple one-site doping or single-component substitution strategy, such


as mixed metal ions, mixed ligands, or mixed ammonium, to tune the related properties27,28,29,30,31,32,33,34,35,36,37. These solid solutions often have properties that are between those of


the pure components. For instance, the phase transition temperatures of the phase-changeable CP solid solutions are often between those of the unmixed components (_Modes 1_ and _2_ shown in


Fig. 1). To expand the tunable scope inspired by the mixed-cation lead mixed-halide perovskite38, we conceive that a synchronous dual mixing strategy, i.e., the _Mode 3_, may shift the


tunable scope to lower temperature range, which is somewhat similar to the melting point reduction effect of common metal alloys due to the weakening interatomic forces. Bearing the


aforementioned considerations in mind and adopting the strategy of _Mode 3_ in Fig. 1, we thus put forward a trial project shown in Fig. 2, and our preliminary research endeavors yielded two


such CPs, (_i_-PrNHMe2)[Cd(SCN)3] (1) and (MeNEt2)[Cd(SCN)3] (2), both of which have same empirical formula and undergo reversible solid–solid and solid–liquid phase transitions above room


temperature. Importantly, 1 can not only function as a high-contrast thermoresponsive NLO switch owing to the solid–solid phase transition, but also form CP solid solutions with 2 which


exhibit a highly adjustable on-off temperature of the NLO effect merely by varying the component ratio. RESULTS THERMAL ANALYSES FOR CPS 1 AND 2 The thermogravimetric curves of 1 and 2 are


very similar, and indicate that both of them are stable up to about 416 K, whereupon a decomposition process occurs (Supplementary Fig. 1). Differential scanning calorimetry (DSC) curves of


1 and 2 both show two pairs of endothermic/exothermic peaks at heating/cooling runs (Fig. 3), revealing that each of them undergoes two reversible phase transitions above room temperature.


Variable-temperature powder X-ray diffraction (PXRD) analyses as well as the melting point test further confirm that the first phase transition is a solid–solid one (Supplementary Fig. 2),


whereas the second is a solid–liquid one. The DSC curves indicate that 2 has a little higher _T_C(solid–solid) and a slightly lower _T_C(solid–liquid) in comparison with those of 1. For


convenience, we label the solid phases below and above the _T_C(solid–solid) as Α and Β phase, respectively. For such solid–solid phase transitions, the sharp peak shapes, prominent enthalpy


changes (27.7/–26.6 J g–1 for 1 and 18.9/–18.7 J g–1 for 2 during the heating/cooling process), and somewhat wide thermal hysteresis between the heating and cooling runs (~6.2 K for 1 and


~12.7 K for 2) reveal the typical characteristics of a first-order phase transition. On the other hand, the enthalpy changes of the solid–liquid phase transitions (60.8/–59.3 J g–1 for 1 and


63.7/–61.8 J g–1 for 2 during the heating/cooling process) are about 2.2 and 3.4 times, respectively, in comparison with their corresponding solid–solid ones. THE THERMORESPONSIVE NLO


SWITCHING OF CP 1 The preliminary NLO effect tests were first performed for 1 and 2 at room temperature using the Kurtz and Perry method39, showing that 1 is SHG-active whereas 2 is


SHG-inactive. Further experiment for 1 proved that such effect is phase-matchable (Supplementary Fig. 3). A comparison of the second-harmonic signal produced by samples of 1 and


commercialized KDP (KH2PO4) in the same particle range of 150~210 mm revealed that it exhibits a SHG efficiency ~1.5 times that of KDP. In consideration of its structural phase transition,


in situ variable-temperature NLO effects were studied in the range of 305~345 K. As shown in Fig. 4, upon heating, its SHG signals were maintained in Α phase, while higher temperature over


_T_C leads to a complete obliteration of SHG effects. In its NLO-inactive state at Β phase, no SHG signal was detected, except for quite weak noise errors (inset in Fig. 4). The subsequent


cooling process confirmed that such switch is reversible, corresponding to the DSC measurements. The NLO switching contrast of 1, defined as the ratio of SHG intensities at high-NLO and


low-NLO states, was found to be ∼74. Such a value is higher than those for most solid-state materials reported to date13,20, demonstrating that 1 is a good candidate as NLO-switching


material. STRUCTURAL ANALYSES OF CP 1 As is known, an essential requirement for crystalline SHG-active materials is that they must be assembled into a noncentrosymmetric structure. To


understand the NLO-switching mechanism of 1, firstly single-crystal X-ray diffraction was performed for 1 at two different temperatures, revealing that it crystallizes in the polar space


group _Cmc_21 at Α phase and in the centrosymmetric space group _P_63/_mmc_ at Β phase (Supplementary Table 1). The crystal structures can be roughly described as a hexagonal perovskite-like


structure, which is similar to those of the inorganic BaNiO3 and the organic–inorganic (Pyrrolidinium)MnBr340, with a general formula of ABY3 (the valence ratio of A:B:Y is +1:+2:–1). The


asymmetric unit of 1Α contains a half-occupied Cd2+ cation, one full and a half-occupied SCN− anions as well as a half-occupied (_i_-PrNHMe2)+ cation (Supplementary Fig. 4). The


half-occupied Cd(1) ion, locating in a crystallographic mirror plane, is octahedrally coordinated to three N and three S atoms from six SCN- anions, in a _fac_-configuration. The two types


of SCN−anions in 1Α, with one locating in a mirror plane and the second occupying a general position, both act as end-to-end bridging ligands between two Cd2+ ions. The bridging of the Cd2+


ions through these SCN− anions leads to an infinite {[Cd(SCN)3]−}∞ chain, in which each pair of neighboring Cd2+ ions is triply bridged by three SCN− anions, and the coordination atoms


between two neighboring Cd2+ ions are “1_S_ + 2_N_” on one side and “1_N_ + 2_S_” on the other side (Fig. 5a). The overall crystal structure of 1Α can be viewed as an approximate hexagonal


packing of the parallelly aligned {[Cd(SCN)3]−}∞ chains that run along the _c_-axis, extending along the _ab_-plane, with charge-balanced discrete (_i_-PrNHMe2)+ cations filling in the


inter-chain space (Fig. 5a and Supplementary Fig. 5). It is noted that the (_i_-PrNHMe2)+ cation in 1Α is two-fold disordered, related by a crystallographically imposed mirror symmetry. From


1Α to 1Β, one significant structural change of the crystal is the highly disorder of all components, suggesting that such phase transition belongs to an order-disorder type. As shown in


Fig. 5b and Supplementary Fig. 6, the host {[Cd(SCN)3]−}∞ chain and guest (_i_-PrNHMe2)+ cation turn six- and twelvefold disordered, respectively, both related by a crystallographically


imposed symmetry. What’s more, the synergetic disorder of the host and guest components results in the transform from a noncentrosymmetric space group to a centrosymmetric one, which


coincides well with the observed NLO-switching phenomenon. Considering the highly disordered state of all components, the 1Β phase can be regarded as a transitional “melt-like” state. From


the viewpoint of symmetry breaking, a total symmetry decrease from twenty four symmetric elements (_E_, 2_C_6, 2_C_3, _C_2, 3_C_2′, 3_C_2′′, _i_, 2_S_3, 2_S_6, _σ__h_, 3_σ__v_, 3_σ__d_) to


four (_E_, _C_2, 2_σ__v_) during the transition Β→Α (Supplementary Fig. 7), denoting that this transition is a ferroelastic one with an Aizu notion of 6_mmm_F_mm_241. MOLECULAR DYNAMICS


SIMULATIONS OF CP 1 To further gain a direct insight into the microscopic dynamic characteristics of 1 and uncover the macroscopic NLO-switching mechanism, we performed molecular dynamics


(MD) simulations at 296 and 363 K, respectively, based on the corresponding unit-cell parameters of Α/Β phase (keeping the volumes unchanged). As shown in Supplementary Fig. 8a–i, the


orientation of the ammonium N–H bond in 1Α phase, which can be roughly viewed as the polarizability tensor of a second-order NLO chromophore, i.e., (_i_-PrNHMe2)+ ion, is almost invariable


over the simulation time, and no rotation is observed for the host {[Cd(SCN)3]−}∞ chain (Supplementary Fig. 8j). The two-fold disorder of the (_i_-PrNHMe2)+ ion in 1Α phase is static in


essence. In contrast, the MD simulation result shows that the N–H bond in 1Β phase constantly and markedly changes its orientation during the simulation process (Fig. 6a–i). Thus, the


statistical superposition effect of the microscopic polarizabilities for these dynamically disordered NLO chromophores within the crystal leads to a vanishing of the macroscopic


hyperpolarizability in Β phase. Meanwhile, a certain degree of dynamic rotation can be found for the host {[Cd(SCN)3]−}∞ chain (Fig. 6j). Overall, the MD simulation results coincide well


with the above-mentioned single-crystal structure analyses, and perfectly explain how the polar space group in Α phase can transform to a centrosymmetric one. STRUCTURAL ANALYSES OF CP 2 For


2, it can be viewed as an isomeric analogue of 1. Different to the polar packing of 1Α, 2Α crystallizes in a centrosymmetric space group _P_21/_c_, with the asymmetric unit containing two


types of Cd2+ ions, six unique SCN- anions as well as two crystallographically independent (MeNHEt2)+ cations (Supplementary Fig. 9). The bridging of adjacent Cd2+ ions through the


end-to-end SCN- anions also leads to an infinite {[Cd(SCN)3]−}∞ chain, which is topologically similar to that of 1Α (Supplementary Fig. 10). Although the Cd2+ ion in 2Α is also 3_N_3_S_


hexa-coordinated as that in 1Α, one subtle difference is that the three coordinated N/S atoms are arranged in a _mer_-configuration rather than a _fac_-configuration, resulting in a smaller


bending degree of the zigzag anionic chain (Supplementary Fig. 11). This difference suggests that the shape and size of the guest ammonium ion have a strong template effect on the formation


of these host anionic chains. It is noted that if _N_,_N_'-dimethylimidazolium is employed as the guest cation, a distinct anionic chain with 4_N_2_S_ and 2_N_4_S_ coordination


environment can be formed42. From the crystallography perspective, the {[Cd(SCN)3]−}∞ chain and each pair of disordered (_i_-PrNHMe2)+ cations in 1Α both are related by a


crystallographically imposed mirror symmetry, while the isomeric {[Cd(SCN)3]−}∞ chain and (MeNHEt2)+ cation in 2Α both locate at general position. Because of the seriously disordered state


of 2Β phase, the single-crystal X-ray data collection at this phase cannot be performed. However, the experimental PXRD pattern at 358 K shows that this phase still retains a crystalline


state, and the Pawley refinement (Supplementary Fig. 12) reveals the presence of a monoclinic unit cell: _a_ = 15.729(1) Å, _b_ = 9.0241(1) Å, _c_ = 10.7840(8) Å, _V_ = 1508.79(1) Å3


(residuals _R_p = 3.17%, _R_wp = 4.35%), with _C_2/_c_ as the most possible space group. The molecular volume unit (_V_cell/_Z_) expands ~5.6% as the temperature increases from 296 to 358 K.


X-RAY ABSORPTION NEAR-EDGE STRUCTURE ANALYSES Upon further heating of 1Β or 2Β, a melting process can be observed (for instance, see Supplementary Movie 1). To monitor the detailed changes


of the coordination bonds during the heating process, an in situ variable-temperature, synchrotron-based spectroscopy of X-ray absorption near-edge structure (XANES) was conducted.


Supplementary Fig. 13 shows the XANES at the Cd _K_-edge for 1 and 2 at different temperatures, with Cd foil, [Cd(H2O)6]2+ in aqueous solution (Cdaq) and CdS as the reference samples (the


valence state of Cd foil is zero). As guided by the arrow, when the Cd _K_-edge shifts to right, the valence state of Cd becomes higher. Thus, the order of oxidation state is as following:


Cd-foil < 1 ≈ 2 ≈ CdS < Cdaq. The extended X-ray absorption fine structure (EXAFS) fitting at the Cd _K_-edge (Supplementary Fig. 14) afforded more useful information such as the local


coordination numbers and the bond distances about the Cd atom (Supplementary Table 4). It is clearly demonstrated that the coordination bonds around the Cd atoms show no breaking in the


melting state, keeping six-coordinated. However, a notable change is that the Cd–S bonds shorten from ~2.72 Å (at 296 K) to ~2.59 Å (at 398 K) for 1, and similar change is also observed for


2. To achieve a high resolution in both _k_ and _R_ spaces, the wavelet transform was employed for further EXAFS analysis43. In comparison with the wavelet transform contour plots of the


referenced Cdaq and CdS samples, those of 1 and 2 (Fig. 7, Supplementary Fig. 15) not only unambiguously distinguishes the coordination of both S/N atoms, but also confirms the shortening of


the Cd–S bond in the melting state. This abnormal shortening of bond length at higher temperature can be ascribed to the tension contraction along the chain direction. In the solid state,


the interaction between the guest ammonium and the host chain makes the chain tighten. When turning to melting state, the weakening host-guest interaction loosens the chain tension to some


extent. SOLID SOLUTIONIZING AND TUNABLE NLO SWITCH TEMPERATURE By and large, the packing structures of 1 and 2 can be described as two types of parallelly arranged {[Cd(SCN)3]−}∞ chains,


each with charge-balanced (_i_-PrNHMe2)+ or (MeNHEt2)+ cations filling in their inter-chain region, respectively. In addition, a sticky melting state of them can be observed upon further


heating of the 1Β or 2Β phase. These structural characteristics are very beneficial for the preparation of CP solid solutions through the “mixing → melting → cooling” procedure. Hence, by


utilizing the structural similarities as suggested in Fig. 2, we successfully prepared the continuous CP solid solutions of 1 and 2, which can be modulated in an arbitrary mixing ratio (For


experimental details, see the Supporting Information). The experimental PXRD patterns of these CP solid solutions confirm that they are not the mechanical mixing of 1 and 2 but all form a


single phase (Fig. 8). Furthermore, the Pawley refinements on these observed PXRD data (Supplementary Fig. 16) reveal that the room temperature unit-cell parameters of {10.9920.01},


{10.97620.024} and {10.95220.048} are similar to those of 1Α phase, while {10.66720.333} and {10.5020.50} are similar to those of 1Β phase (Supplementary Table 5). As for {10.87520.125}, the


room temperature PXRD pattern is recorded just during the phase transition, which can be further identified by the DSC measurement (vide infra). The impact of solid solution on the phase


transitions was first analyzed using DSC measurement (Supplementary Figs. 17 and 18). With increasing proportion of _x_, the _T_C(solid–solid) decreases approximately linearly from ~328 K


for pure 1 to ~273 K for solid solution {10.66720.333}. As _x_ further increases to 50.0%, the _T_C increases slightly. The variable-temperature SHG signals for the CP solid solutions were


measured to check their NLO-switching function. As the ratio of 2 increases from 1.0 to 33.3%, all the CP solid solutions behave as a high-contrast thermoresponsive NLO switch accompanied by


a continuously declining _T_S (Fig. 9), in accordance with the DSC measurements. Meanwhile, the SHG-active area expands across the minimum _T_C (Supplementary Fig. 18), leading to a


curves-crossed phenomenon for the ratios of 33.3 and 50.0% (Fig. 7). Although the SHG intensity decreases with an increased ratio of 2, the SHG signal remains strong enough in comparison


with that of KDP. When the ratio of 2 rises to 0.60, no detectable SHG signals are observed before/after phase transition. Overall, through the dual solid solution approach, the _T_S can be


finely tuned below and above room temperature (roughly ranging from 273 to 328 K). The lowering of _T_S for these CP solid solutions can be attributed to the weakening interaction between


the host {[Cd(SCN)3]−}∞ chains and the guest ammonium cations. DISCUSSION In summary, by combining the thermoresponsive NLO-switching function of phase-change material and the dual solid


solution approach within the CP system, via mixed melting treatment, we provide a method for producing thermoresponsive NLO switch with highly tunable on-off temperature. In addition, an


abnormal shortening of Cd–S bond in the melting state was revealed by in situ variable-temperature EXAFS analysis, owing to the tension contraction of the anionic chain. We are currently


extending such a synthetic technique to other CP solid solutions with precisely tunable functions. METHODS MATERIALS All chemicals were commercially available and used without further


purification. FT-IR spectra of KBr pellets were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer from 4000 to 400 cm−1. PXRD patterns (Cu-K_α_) were collected on a Bruker Advance


D8 _θ_–2_θ_ diffractometer. Thermogravimetric analyses (TGA) were carried out on a TA Q50 system at a heating rate of 10 K min−1 in a N2 flow. Differential scanning calorimeter (DSC)


measurements were performed on a TA Q2000 instrument, at a heating/cooling rate of 10 K min−1. Variable-temperature SHG experiments with a programmable temperature control system were


executed by Kurtz-Perry powder SHG test using an Nd:YAG laser (1064 nm). The values of the NLO coefficients for SHG were determined by the comparison with commercialized KDP (KH2PO4).


SYNTHESES OF CPS 1 AND 2 A mixture of CdSO4 (1 mmol), KSCN (3.0 mmol) and _N_,_N_-dimethylisopropylamine (1.0 mmol) was dissolved in aqueous H2SO4 (1.0 mmol/g) under stirring. The resultant


clear solution was allowed to stand at room temperature. After several hours later, colorless column-shaped crystals of 1 were deposited from the solution, in ca. 81% yield based on Cd. When


a similar procedure was performed but with _N_,_N_-diethylmethylamine in place of _N_,_N_-dimethylisopropylamine, column-shaped crystals of 2 were obtained in ca. 77% yield based on Cd. The


PXRD patterns for grinded crystals indicated that their experimental pattern match well with the simulated ones (Supplementary Fig. 2). IR data (KBr, cm−1) for 1: 3443(m), 3110(m), 2987(m),


2974(m), 2131(s), 2107(s), 1633(m), 1462(s), 1437(m), 1409(m), 1385(m), 1348(m), 1318(m), 1148(m), 1081(m), 989(m), 920(m), 882(m), 755(m); 721(m), 616(m), 547(m). for 2: 3450(m), 3121(m),


2998(m), 2981(m), 2091(s), 1638(m), 1476(m), 1449(s), 1389(m), 1364(m), 1146(s), 1041(m), 1001(m), 874(m), 829(m), 764(m), 664(m), 617(m). SYNTHESES OF THE SOLID SOLUTIONS OF CPS 1 AND 2 The


mixture of 1 and 2 in a mole ratio of (1—_x_):_x_ was grinded and mixed well into a small glass bottle, then placed in an oven at a temperature of 120 °C for 3 h, as a melting state. After


slow cooling to room temperature, colorless CP solid solutions adhered to the bottle bottom were obtained. SINGLE-CRYSTAL X-RAY CRYSTALLOGRAPHY The single-crystal X-ray diffraction


intensities for 1 and 2 at 296 K were collected on a Smart Apex II CCD diffractometer, while those for 1 at 348 K were collected on a Rigaku Oxford SuperNova diffractometer. Both


diffractometers are equipped with a graphite-monochromated Mo-K_α_ radiation (_λ_ = 0.71073 Å). Absorption corrections were applied by using multi-scan program SADABS or CrysAlisPro (Agilent


Technologies) software44,45. The structures were solved with direct methods and refined with a full-matrix least-squares technique with the _SHELXTL_ program package46. Anisotropic atomic


displacement parameters were applied to all non-hydrogen atoms except the quite disordered (_i_-PrNHMe2)+ cations of 1 at 348 K. All H atoms were positioned geometrically and included in the


refinement in the riding-model approximation. Crystallographic data and structural refinements for 1 and 2 at different temperatures are summarized in Supplementary Table 1. The selected


bond lengths of them are listed in Supplementary Tables 2 and 3, respectively. EXTENDED X-RAY ABSORPTION FINE STRUCTURE (XAFS) MEASUREMENTS All the acquired XAFS spectra of the samples and


references were measured at the beamline BL 14W1 of the Shanghai Synchrotron Radiation Facility (SSRF). Samples that were pressed into thin sheets were positioned at 45° to the incident beam


in the sample-holder. The typical energy of the storage ring and the electron current were 3.5 GeV and ~220 mA in the top-up mode, respectively. The monochromatized white light via a Si


(311) double-crystal monochromator was calibrated with Cd(aq) as reference. All the spectra were measured with a Lytle detector in a fluorescence mode. A software package of Demeter47 was


employed to analyze the XAFS data. First of all, the spectra were normalized by Athena, and the subsequent shell fittings were performed with Artemis. All fittings were executed in


_R_-space, and Fourier transformed (FT) using k3 weighting was adopted to the _χ_(k) function. According to the fitting results of the Cd(aq) reference, the amplitude reduction factor (S02)


can be estimated as 0.839. By fitting the experimental peaks with theoretical amplitude, coordination parameters for the test samples were evaluated. Moreover, a wavelet transform technique


was carried out through the Igor pro script developed by Funke et al.48, so as to investigate the first-shell backscattering atoms and detect light as well as heavy scatters. Due to the fine


resolution in both wavenumbers _k_ and radial distribution function _R_, this qualitative analysis, as a complement to overcome the limitation of FT analysis, was mainly focused on the


nature of the backscattering atoms and the bond lengths. For a better resolution in the wave vector _k_, the Morlet wavelet was set as basis mother wavelet and the parameters of _η_ = 8 and


_σ_ = 1 were used. CLASSICAL MD SIMULATION The _Forcite_ program as part of the _Materials Studio 5.5 package_49, was used to perform the classical MD simulations for 1. Periodic models


based on the experimental crystal data and the Universal forcefield were adopted for all the simulations. The constant-volume and temperature (NVT) ensemble with Nose thermostat and random


initial velocities method were used to simulate the dynamic processes, with the unit-cell parameters of initial models being fixed while all atoms and coordinates being set in free motion.


The charge equilibration (QEq) method50 was employed to estimate the partial atomic charges of all atoms. The buffer widths of the electrostatic interactions and the van der Waals


interactions evaluated by the Ewald summation method were both set as 0.5 Å. The total simulation time was 4 ns, with a time step of 1 fs. DATA AVAILABILITY The data that support the


findings of this study are available from the corresponding author upon reasonable request. CODE AVAILABILITY The X-ray crystallographic coordinates for structures reported in this Article


have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1962900, 1962901 and 1962902. These data can be obtained free of charge from The


Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. REFERENCES * Sliwa, M. et al. Design, synthesis, structural and nonlinear optical properties of photochromic


crystals: toward reversible molecular switches. _Chem. Mater._ 17, 4727–4735 (2005). Article  CAS  Google Scholar  * Bi, W. et al. A switchable NLO organic–inorganic compound based on


conformationally chiral disulfide molecules and Bi(III)I5 iodobismuthate networks. _Adv. Mater._ 20, 1013–1017 (2008). Article  CAS  Google Scholar  * Green, K. A., Cifuentes, M. P., Samoc,


M. & Humphrey, M. G. Metal alkynyl complexes as switchable NLO systems. _Coord. Chem. Rev._ 255, 2530–2541 (2011). Article  CAS  Google Scholar  * Segerie, A. et al. Nonlinear optical


switching behavior in the solid state: a theoretical investigation on anils. _Chem. Mater._ 23, 3993–4001 (2011). Article  CAS  Google Scholar  * Serra-Crespo, P. et al. NH2-MIL-53(Al): a


high-contrast reversible solid-state nonlinear optical switch. _J. Am. Chem. Soc._ 134, 8314–8317 (2012). Article  CAS  PubMed  Google Scholar  * Castet, F. et al. Design and


characterization of molecular nonlinear optical switches. _Acc. Chem. Res._ 46, 2656–2665 (2013). Article  CAS  PubMed  Google Scholar  * Li, P. X. et al. Electron-transfer photochromism to


switch bulk second-order nonlinear optical properties with high contrast. _Angew. Chem. Int. Ed._ 53, 11529–11531 (2014). Article  CAS  Google Scholar  * Boixel, J. et al. Second-order NLO


switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. _J. Am. Chem. Soc._ 136, 5367–5375 (2014). Article  CAS  PubMed  Google Scholar  * Xing,


X. S. et al. Second-order nonlinear optical switching with a record-high contrast for a photochromic and thermochromic bistable crystal. _Chem. Sci._ 8, 7751–7757 (2017). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Sun, Z. H. et al. Solid-state reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast. _Adv. Mater._ 25,


4159–4163 (2013). Article  CAS  PubMed  Google Scholar  * Sun, Z. H. et al. Second-order nonlinear optical switch of a new hydrogen-bonded supramolecular crystal with a high laser-induced


damage threshold. _Adv. Optical Mater._ 2, 1199–1205 (2014). Article  ADS  CAS  Google Scholar  * Sun, Z. et al. High-performance switching of bulk quadratic nonlinear optical properties


with large contrast in polymer films based on organic hydrogen-bonded ferroelectrics. _Chem. Mater._ 27, 4493–4498 (2015). Article  ADS  CAS  Google Scholar  * Sun, Z. H., Chen, T. L., Liu,


X. T., Hong, M. C. & Luo, J. H. Plastic transition to switch nonlinear optical properties showing the record high contrast in a single-component molecular crystal. _J. Am. Chem. Soc._


137, 15660–15663 (2015). Article  CAS  PubMed  Google Scholar  * Xu, W.-J. et al. Molecular dynamics of flexible polar cations in a variable confined space: toward exceptional two-step


nonlinear optical switches. _Adv. Mater._ 28, 5886–5890 (2016). Article  CAS  PubMed  Google Scholar  * Liu, S. et al. Exceptional bi-step switching of quadratic nonlinear optical properties


in a one-dimensional channel compound. _Chem. Commun._ 53, 7669–7672 (2016). Article  Google Scholar  * Ji, C. et al. Exceptional three-level switching behaviors of quadratic nonlinear


optical properties in a tristable molecule-based dielectric. _Chem. Mater._ 29, 3251–3256 (2017). Article  CAS  Google Scholar  * Zheng, X. et al. Dielectric and nonlinear optical dual


switching in an organic–inorganic hybrid relaxor [(CH3)3PCH2OH][Cd(SCN)3]. _Inorg. Chem. Front._ 4, 1445–1450 (2017). Article  CAS  Google Scholar  * Zhang, J. et al. A lead-free


perovskite-like hybrid with above-room-temperature switching of quadratic nonlinear optical properties. _Chem. Commun._ 54, 5614–5617 (2018). Article  CAS  Google Scholar  * Wu, Z. et al.


Above-room-temperature switching of quadratic nonlinear optical properties in a Bi-halide organic–inorganic hybrid. _J. Mater. Chem. C._ 6, 9532–9536 (2018). Article  CAS  Google Scholar  *


Liu, X. et al. [C5H12N]SnCl3: a tin halide organic–inorganic hybrid as an above-room-temperature solid-state nonlinear optical switch. _Chem. Eur. J._ 25, 2610–2615 (2019). Article  CAS 


PubMed  Google Scholar  * Gaillac, R. et al. Liquid metal–organic frameworks. _Nat. Mater._ 16, 1149–1154 (2017). Article  ADS  CAS  PubMed  Google Scholar  * Bennett, T. D. & Horike, S.


Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. _Nat. Rev. Mater._ 3, 431–440 (2018). Article  ADS  Google Scholar  * Longley, L. et al.


Liquid phase blending of metal–organic frameworks. _Nat. Commun._ 9, 2135 (2018). Article  ADS  PubMed  PubMed Central  CAS  Google Scholar  * Horike, S., Umeyama, D., Inukai, M., Itakura,


T. & Kitagawa, S. Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. _J. Am. Chem. Soc._ 134, 7612–7615 (2012). Article  CAS  PubMed  Google Scholar  *


Spielberg, E. T., Edengeiser, E., Mallick, B., Havenith, M. & Mudring, A.-V. (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid. _Chem. Eur. J._ 20,


5338–5345 (2014). Article  CAS  PubMed  Google Scholar  * Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible solid-to-liquid phase transition of coordination


polymer crystals. _J. Am. Chem. Soc._ 137, 864–870 (2015). Article  CAS  PubMed  Google Scholar  * Zhang, X., Li, L., Sun, Z. & Luo, J. Rational chemical doping of metal halide


perovskites. _Chem. Soc. Rev._ 48, 517–539 (2019). Article  CAS  PubMed  Google Scholar  * Shi, C., Han, X. B., Wang, Y. & Zhang, W. Tuning dielectric transitions by B'-site mixing


in hybrid double perovskite crystals (CH3NH3)2[K1−xRbxCo(CN)6] (x = 0.23–0.62). _Inorg. Chem. Front._ 3, 1604–1608 (2016). Article  CAS  Google Scholar  * Nayak, P. K. et al. Impact of Bi3+


heterovalent doping in organic–inorganic metal halide perovskite crystals. _J. Am. Chem. Soc._ 140, 574–577 (2018). Article  CAS  PubMed  Google Scholar  * Fukushima et al. Solid solutions


of soft porous coordination polymers: fine-tuning of gas adsorption properties. _Angew. Chem. Int. Ed._ 49, 4820–4824 (2010). Article  CAS  Google Scholar  * Ye, H. Y. et al. Bandgap


engineering of lead-halide perovskite-type ferroelectrics. _Adv. Mater._ 28, 2579–2586 (2016). Article  CAS  PubMed  Google Scholar  * Liu, S.-Y. et al. Flexible, luminescent metal–organic


frameworks showing synergistic solid-solution effects on porosity and sensitivity. _Angew. Chem. Int. Ed._ 55, 16021–16025 (2016). Article  CAS  Google Scholar  * Selig, O. et al. Organic


cation rotation and immobilization in pure and mixed methylammonium lead-halide perovskites. _J. Am. Chem. Soc._ 139, 4068–4074 (2017). Article  CAS  PubMed  Google Scholar  * Panda, T. et


al. Mechanical alloying of metal–organic frameworks. _Angew. Chem. Int. Ed._ 56, 2413–2417 (2017). Article  CAS  Google Scholar  * Wang, Y., Shi, C. & Han, X. B. Mixed bromine–chlorine


induced great dielectric and second-order nonlinear optical properties changes in phase transitions compounds [H2mdap][BiBr5(1-x)Cl5x] (x = 0.00–1.00). _J. Phys. Chem. C_ 121, 23039–23044


(2017). Article  CAS  Google Scholar  * Chen, S., Shang, R., Wang, B. W., Wang, Z. M. & Gao, S. An A-site mixed-ammonium solid solution perovskite series of


[(NH2NH3)x(CH3NH3)1−x][Mn(HCOO)3] (x = 1.00–0.67). _Angew. Chem. Int. Ed._ 54, 11093–11096 (2015). Article  CAS  Google Scholar  * Liao, W.-Q. et al. A molecular perovskite solid solution


with piezoelectricity stronger than lead zirconate titanate. _Science_ 363, 1206–1210 (2019). Article  ADS  CAS  PubMed  Google Scholar  * McMeekin et al. A mixed-cation lead mixed-halide


perovskite absorber for tandem solar cells. _Science_ 351, 151–155 (2016). Article  ADS  CAS  PubMed  Google Scholar  * Kurtz, S. K. & Perry, T. T. A powder technique for the evaluation


of nonlinear optical materials. _J. Appl. Phys._ 39, 3798–3813 (1968). Article  ADS  CAS  Google Scholar  * Zhang, Y. et al. The first organic–inorganic hybrid luminescent multiferroic:


(Pyrrolidinium)MnBr3. _Adv. Mater._ 27, 3942–3946 (2015). Article  CAS  PubMed  Google Scholar  * Aizu, K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and


ferroelastic crystals. _J. Phys. Soc. Jpn._ 27, 387–396 (1969). Article  ADS  CAS  Google Scholar  * Chen, W., Liu, F. & You, X. Inorganic–organic hybrid materials: synthesis and X-ray


structure of _N_,_N_'-dimethylimidazolium salts [(Me2Im)2][Cd2(SCN)6] and _N_,_N_'-dicyclohexylimidazolium [(Cy2Im)2][Cd2(SCN)6]·C3H6O. _J. Solid State Chem._ 167, 119–125 (2002).


Article  ADS  CAS  Google Scholar  * Chen, W. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. _Adv. Mater._ 30, 1800396


(2018). Article  CAS  Google Scholar  * APEX2, SADABS, and SAINT (Bruker AXS Inc.: Madison, Wisconsin, USA, 2008). * CrysAlisPro (Rigaku Oxford Diffraction, 2015). * Sheldrick, G. M. Crystal


structure refinement with SHELXL. _Acta Crystallogr., Sect. C_ 71, 3–8 (2015). Article  MATH  CAS  Google Scholar  * Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis


for X-ray absorption spectroscopy using IFEFFIT. _J. Synchrotron Radiat._ 12, 537 (2005). Article  CAS  PubMed  Google Scholar  * Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet


analysis of extended X-ray absorption fine structure data. _Phys. Rev. B_ 71, 094110 (2005). Article  ADS  CAS  Google Scholar  * Accelrys, Materials Studio Getting Started, release 5.5


(Accelrys Software Inc.:San Diego, CA, 2009). * Ramachandran, S., Lenz, T. G., Skiff, W. M. & Rappé, A. K. Toward an understanding of zeolite Y as a cracking catalyst with the use of


periodic charge equilibration. _J. Phys. Chem._ 100, 5898–5907 (1996). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by the NSFC (21661004,


21671202 and 21821003), the Funding Project for Academic/Technical Leaders of Jiangxi Province (20172BCB22021), the NSF of Jiangxi Province (20192ACB20013), and the Local Innovative and


Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C161). C.-T.H. acknowledges the Young Elite Scientists Sponsorship Program by CAST. We thank the BL14W1 in SSRF for


XAS measurement. AUTHOR INFORMATION Author notes * These authors contributed equally: Shi-Yong Zhang, Xia Shu, Ying Zeng. AUTHORS AND AFFILIATIONS * College of Chemistry and Chemical


Engineering, MOE Key Laboratory of Functional Small Organic Molecule, Jiangxi Normal University, Nanchang, 330022, China Shi-Yong Zhang, Qing-Yan Liu, Zi-Yi Du & Chun-Ting He * College


of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China Shi-Yong Zhang & Xia Shu * MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of


Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China Ying Zeng, Wei-Xiong Zhang & Xiao-Ming Chen Authors * Shi-Yong Zhang View author publications You can also search for this


author inPubMed Google Scholar * Xia Shu View author publications You can also search for this author inPubMed Google Scholar * Ying Zeng View author publications You can also search for


this author inPubMed Google Scholar * Qing-Yan Liu View author publications You can also search for this author inPubMed Google Scholar * Zi-Yi Du View author publications You can also


search for this author inPubMed Google Scholar * Chun-Ting He View author publications You can also search for this author inPubMed Google Scholar * Wei-Xiong Zhang View author publications


You can also search for this author inPubMed Google Scholar * Xiao-Ming Chen View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Z.Y.D., S.Y.Z.


and W.X.Z. conceived the idea for the project; S.Y.Z. and X.S. conducted material syntheses and routine characterizations such as TGA and IR spectra; Y.Z. and X.S. performed the data


collection of single-crystal X-ray diffraction, PXRD and DSC measurements; Y.Z. and Q.Y.L. conducted the SHG measurements; C.T.H. and Z.Y.D. performed MD simulation, XAFS measurement and


analyses; Z.Y.D., C.T.H., W.X.Z. and X.M.C. drafted the manuscript. S.Y.Z., X.S. and Y.Z. contributed equally to this work. All authors discussed and commented on the manuscript.


CORRESPONDING AUTHORS Correspondence to Zi-Yi Du, Chun-Ting He or Wei-Xiong Zhang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION


PEER REVIEW INFORMATION _Nature Communications_ thanks Feng Long Gu and other, anonymous, reviewers for their contributions to the peer review of this work. Peer review reports are


available. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION PEER REVIEW FILE SUPPLEMENTARY MOVIE 1 RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0 International License, which permits


use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the


Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated


otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds


the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhang, SY., Shu, X., Zeng, Y. _et al._ Molecule-based nonlinear optical switch with highly tunable on-off temperature using a dual solid


solution approach. _Nat Commun_ 11, 2752 (2020). https://doi.org/10.1038/s41467-020-15518-z Download citation * Received: 14 November 2019 * Accepted: 05 March 2020 * Published: 02 June 2020


* DOI: https://doi.org/10.1038/s41467-020-15518-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link


is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative