Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses

Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses

Play all audios:

Loading...

ABSTRACT Availability of relativistically intense, single-cycle, tunable infrared sources will open up new areas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and


pump-probe experiments in the molecular fingerprint region. However, generation of such pulses is still a challenge by current methods. Recently, it has been proposed that time dependent


refractive index associated with laser-produced nonlinear wakes in a suitably designed plasma density structure rapidly frequency down-converts photons. The longest wavelength photons slip


backwards relative to the evolving laser pulse to form a single-cycle pulse within the nearly evacuated wake cavity. This process is called photon deceleration. Here, we demonstrate this


scheme for generating high-power (~100 GW), near single-cycle, wavelength tunable (3–20 µm), infrared pulses using an 810 nm drive laser by tuning the density profile of the plasma. We also


demonstrate that these pulses can be used to in-situ probe the transient and nonlinear wakes themselves. SIMILAR CONTENT BEING VIEWED BY OTHERS PLASMA ELECTRON ACCELERATION DRIVEN BY A


LONG-WAVE-INFRARED LASER Article Open access 13 May 2024 PROSPECTS FOR FREE-ELECTRON LASERS POWERED BY PLASMA-WAKEFIELD-ACCELERATED BEAMS Article 02 August 2024 GENERATION OF INTENSE


MAGNETIC WAKES BY RELATIVISTIC LASER PULSES IN PLASMA Article Open access 30 January 2023 INTRODUCTION A tunable ultra-short long-wavelength infrared (LWIR, 6–20 µm) laser source is highly


desirable in numerous physics, material science, biology, and medicine applications1,2,3,4,5,6,7,8. Indeed remarkable progress for generating intense few-cycle mid-infrared (mid-IR) pulses


(_λ_ < 4 μm) has been made in recent years through various optical methods, such as optical parametric amplification9,10, filamentation11, and difference-frequency generation12,13,14.


However, to extend these methods for producing relativistically intense, single-cycle pulses in the LWIR region is very challenging due to the lack of suitable optical materials with large


bandwidth and high damage threshold. Recently, it has been proposed that a wake (density disturbance) generated by an intense pump laser pulse in a properly designed plasma density structure


(such as that shown in Fig. 1a) can serve as a new type of nonlinear optical device for generating intense single-cycle broadband LWIR pulses15. Physically this happens because of a


combination of asymmetric self-phase modulation (ASPM) that mainly produces frequency down-converted photons and group velocity dispersion (GVD) of these photons in the plasma. This combined


process is known as photon deceleration in kinetic description of photons in plasma physics16,17,18, where strong time-dependent plasma density (refractive index gradient \(\frac{{\partial


\eta }}{{\partial {\upzeta}}}\) with \({\upzeta} = t - \frac{z}{c}\) being the variable in the speed of light frame) can continuously alter the photon frequency via phase modulation such


that the instantaneous frequency is given by \(\omega \left( t \right) = \omega _0 - \omega _0{\int} {\frac{{\partial \eta }}{{\partial {\upzeta}}}\mathrm{d}t}\) (or \(\frac{1}{\omega


}\frac{{\partial \omega }}{{\partial t}} = - \frac{{\partial \eta }}{{\partial {\upzeta}}}\)), and the longer wavelength photons generated by a positive refractive index gradient travel with


a smaller group velocity \(( {v_{\mathrm{g}}( \omega) \simeq c[ {1 - \frac{{\omega _{\mathrm{p}}^2}}{{2\omega ^2}}} ]})\) than shorter wavelength photons in the plasma19,20,21,22. Here _ω_p


 = (4_πn_p_e_2/_m_e)1/2 is the plasma frequency, _n_p is the plasma density, _m_e is the electron mass, and _e_ is the electron charge. When the laser pulse intensity is moderate (_a_0 ~ 


O(1)) and the pulse duration is roughly one plasma wavelength, laser photons are frequency downshifted at the front and are upshifted at the back of the pulse as in usual self-phase


modulation. Here _a_0 = _eE_/_mωc_ is the normalized vector potential of the laser pulse, where _E_ is the electric field of the laser pulse and _c_ is the speed of light. This mechanism has


been used for pulse compression23,24,25 or as a diagnostic for the generation of wakes in plasmas26,27,28. Recently this concept was extended to explore the possibility of generation of


mid-IR pulses using particle-in-cell (PIC) simulations29,30. Experimentally, the near-IR pump pulse was broadened to mid-IR wavelengths using uniform density plasmas31,32,33. However, none


of the previous works to date have succeeded in extending the concept of photon deceleration in plasma wakes to generate near single-cycle, tunable, and relativistic pulses in the LWIR


region. Here, we experimentally demonstrate the generation of such pulses containing millijoules of energy in the 3–20 µm wavelength range by utilizing the interaction between an intense


laser pulse and the nonlinear wake it generates in a specially prepared plasma density structure. RESULTS CONCEPT AND EXPERIMENTAL REALIZATION The plasma density structure used in the


experiments is a low-density platform with a sharp density upramp (Fig. 1a). We use a supersonic hydrogen gas jet target with an insertable blade to shock-induce a density spike34,35,36 in


the gas flow to produce the necessary density profile of the gas (Fig. 1b). When an ultra-short (36 ± 2 fs, FWHM), energetic (580 ± 9 mJ), 810 nm wavelength drive laser pulse37 passes


through, it produces both a fully ionized plasma via field-induced ionization38 and a highly nonlinear wake39 throughout the structure. Briefly, the ponderomotive force of the focused laser


pulse is large enough to expel nearly all the plasma electrons leaving behind the more massive ions. These electrons are however attracted back by the Coulomb force of the ions forming a


bubble-like wake cavity where the ions are encapsulated by a thin sheath of plasma electrons. The strong time-dependent plasma density gradients formed during the expulsion of the plasma


electrons phase modulate the laser pulse downshifting the instantaneous frequency of the photons as explained earlier while the wavelength-dependent group velocity disperses these photons.


The measured density profiles of the plasma structure for three different settings of the insertion position of the blade in the gas flow emanating from the supersonic gas nozzle are shown


in Fig. 1a. The first section of the plasma structure is called the pulse compressor (PC). The PC is a few-millimeter-long relatively low-density section (where the wake dimension is on the


order of laser pulse length) that first chirps and then self-compresses much of the drive laser pulse from typically 40 to 10 fs. This is caused by the combined effect of gentle photon


deceleration at the front where the plasma electrons are being blown out by the laser pulse followed by photon acceleration at the back of the pulse and negative GVD within the wake


analogous to chirping and compression in a fiber with nonlinear refractive index _n_2 and GVD having opposite signs. The second section is called the IR converter (IR-CON). The IR-CON is a


shorter, higher-density section where large refractive index gradients formed by the compressed ultra-short pulse (far shorter than the wake cavity dimension) lead to rapid and efficient


photon deceleration (by ASPM). The longer wavelength components recede rapidly, phase lock, and eventually reside in the main body of the wake to generate a near single-cycle LWIR pulse.


Finally, this LWIR pulse is coupled from plasma to vacuum by the third section called an output coupler (OC). The OC is a plasma downramp used to further tune the carrier wavelength of the


LWIR pulse and transport it out of the plasma structure with little attenuation by gradually elongating the wake15. By using plasma as a nonlinear medium we circumvent the damage


considerations that limit the power densities in other optical methods9,10,12,13,14 to generate relativistically intense, tunable, near single-cycle LWIR pulses. By controlling the peak


density of the IR-CON section of the plasma structure, we have generated tunable IR pulses in the wavelength range of 3–20 μm. The IR pulse is characterized by cross-correlating it with a


second synchronized 810 nm reference pulse, with a known intensity and phase (characterized using a separate Wizzler device, see Supplementary Fig. 5), through cross-correlation


frequency-resolved optical gating (XFROG)40 based on four-wave mixing (FWM) as shown in Fig. 1b. In the XFROG measurement, the residual drive pulse is filtered out so that only photons in


the wavelength range > 1.5 μm are transmitted and detected. LWIR PULSE OPTIMIZATION The plasma density profile is crucial for LWIR pulse generation. We manipulate the peak neutral density


of hydrogen gas in the IR-CON region without significantly affecting either the density of the PC or the scale-length of the OC by varying the insertion position of the blade relative to


the edge of the gas jet from 275 to 525 μm (Fig. 1a). The ultra-short laser pulse then produces a plasma with a density profile proportional to the neutral density profile through


field-induced ionization38. Three examples of the measured plasma density profiles (Fig. 1a) and the measured XFROG traces for these profiles are shown in Fig. 1c–e. The XFROG traces show


the spectra of four-wave sum-frequency generation (FWSFG) and four-wave difference-frequency generation (FWDFG) as functions of time. The entire cross-correlation plot is generated by


varying the delay between the IR pulse and the reference 810 nm pulse using approximately 240 shots, 5 per particular delay between the IR and the reference pulse. Both FWDFG (where _ω_ref +


 _ω_ref − _ω_IR = _ω_FWDFG) and FWSFG (where _ω_ref + _ω_ref + _ω_IR = _ω_FWSFG) signals are observed as expected. Here _ω_ref, _ω_IR, _ω_FWDFG, and _ω_FWSFG are the angular frequencies of


the reference, the wake-generated IR, the difference and sum frequency radiation generated by XFROG, respectively. Since both FWDFG and FWSFG processes involve the same input optical fields,


these traces are symmetric with respect to the _λ_ref/2 = 405 nm axis (black dashed line). Subtracting the expression for FWDFG from the FWSFG expression and substituting the measured


wavelengths observed for _λ_FWSFG(_t_) and _λ_FWDFG(_t_) (see Fig. 1c–e) one directly obtains _λ_IR(_t_). However, we use the FWDFG signal for XFROG retrieval41 to get both the intensity and


phase information of the IR pulse throughout this paper. When the insertion position of the blade is at 275 μm (Fig. 1c, a—blue curve), the IR-CON section of the plasma does not have high


enough density to generate the LWIR pulse—the FWDFG spectrum spans roughly from 600 to 435 nm corresponding to an IR spectrum that spans from 1.5 to 6 μm (MIR). This is the usual MIR


spectrum reported in experiments on wake generation in uniform plasmas31. When the insertion position of the blade is moved to 400 μm, the peak density of the IR-CON region is now sufficient


(Fig. 1a—red curve) to give rise to a very rapid downshifting of photons and thereby generate the LWIR component (the 423 nm peak in FWDFG XFROG trace corresponding to a peak IR wavelength


of 9.4 μm) as seen in Fig. 1d (here the LWIR signal is seen to follow the MIR pulse due to its slower group velocity in the plasma). With a further increase of the insertion position of the


blade to 525 μm (Fig. 1a—yellow curve), the LWIR pulse is seen to be stretched longer in time (Fig. 1e) and in addition a frequency upshifted signal now appears at a delay of 100 fs. By


retrieving many such XFROG traces, we find that the shortest LWIR pulses are produced when the blade is positioned at 400 μm. In this case, the RMS difference between the measured (Fig. 2a)


and retrieved (Fig. 2b) XFROG traces is 0.9%. The temporal (spectral) intensity and phase of the IR pulse are shown in Fig. 2c, d. We focus on the LWIR component (the right dashed box in


Fig. 2b) of the measured IR pulse and retrieve it alone (Fig. 2e, f). This gives a pulse duration of 32.0 fs (FWHM) and a central wavelength of 9.4 μm. This pulse duration is close to the


period of a 9.4 μm wavelength (31.3 fs), indicating the generation of a near single-cycle pulse produced by phase locking of the higher and lower wavelength photons around this carrier


frequency. This is confirmed by the nearly flat phase of the retrieved LWIR pulse that suggests a near-transform-limited (Δ_ν_Δ_t_ = 0.446) pulse with a small linear chirp generated in this


process. LWIR ENERGY The IR energy and XFROG signal (at a particular time) are measured simultaneously on every shot during the experiment. The measured mean IR energy for the case shown in


Fig. 2 is 133 ± 42 μJ. By correcting for the transport efficiency and FWM efficiency (see Supplementary Note 2), the estimated mean LWIR energy (in the range 6–20 μm) generated at Gas jet 1


is no lower than 3.4 ± 1.1 mJ, corresponding to a peak power of no lower than 106 GW, and a conversion efficiency of no lower than 0.6%. This efficiency can be further improved by optimizing


the driving laser’s beam quality and the plasma density structure (see Supplementary Note 3). Due to the conservation of wave action22,42,43 (or photon number) in this photon deceleration


process, the ideal conversion efficiency is limited by the LWIR to pump frequency ratio (the quantum efficiency, ~8% in this case). Accordingly, the normalized vector potential _a_0 of the


LWIR pulse at the exit of Gas jet 1 is about 1.53 ± 0.25. To estimate _a_0, the measured pulse energy and pulse duration are used with the assumption that the spot sizes of the IR pulses are


close to the transverse wake size (verified by 3D PIC simulations shown below). This confirms that the intensity of the LWIR pulse reaches a relativistic level (when _a_0 ~ O(1) electrons


oscillate in the laser field near the speed of light). WAVELENGTH TUNABILITY The central wavelengths of the IR pulses are tuned from 3.2 to 20.0 μm by varying several experimental parameters


(the gas pressure, the blade position relative to the gas jet, and the driving laser energy). In Fig. 3, the measured IR pulse energy for different wavelength cases is plotted together with


the estimated normalized vector potential _a_0 of the IR pulses at the exit of the plasma structure. The detailed XFROG data for each case is shown in Supplementary Figs. 11–14. In all


cases, the IR energy is in several millijoule level, and the _a_0 is estimated to be at relativistic level \(\left( {a_0\; \gtrsim\; 1} \right)\) at the exit of the plasma structure. The


variations in energy or pulse duration between different cases are not due to any plasma instability, but only due to the variation of multiple parameters as mentioned above. In order to


systematically tune the LWIR wavelength and reduce the fluctuations in energy or pulse duration, precise and reproducible control of the plasma density profile is required15. DISCUSSION The


time evolution of the IR pulses inferred from the XFROG traces has already given insight into the physics of highly transient (few picoseconds), microscopic (tens of micron size) and


highly-nonlinear, speed of light wakes. Now we show the application of the generated IR pulses as an in-situ probe of the nonlinear wakes. To illustrate this, the Wigner spectrograms


(frequency vs time) of the IR pulses retrieved from XFROG traces in Fig. 1d, e are presented in Fig. 4a, b, respectively. As we increased the peak density by moving the blade position from


400 to 525 μm (Fig. 4a, b) the latter case first shows strong photon deceleration (0 < _t_(fs) < 100) followed by photon acceleration at a delay of 100 fs. This is then followed by a


second even longer wavelength IR component (center at 160 fs), indicating of this second IR component has leaked through the first wake bucket into the second and is encased there.


Simulations using the 3D PIC code OSIRIS44,45 (with the same density profile as in the experiment) qualitatively verify the above scenario. The snapshots of the simulated Wigner spectrograms


(frequency vs time) of the on-axis laser electric fields corresponding to the experimental cases in Fig. 4a, b are displayed in Fig. 4c, d, respectively. The corresponding snapshots of the


plasma density (wake) and laser electric field are shown in Fig. 4e, f, presenting two very different wakefield structures. In both cases, continuous self-injection of electrons happens. In


Fig. 4e, the self-injection of electrons leads to gradual elongation of the first bucket46,47 but the resultant beam loading and the ponderomotive force of the LWIR pulse are not strong


enough to force the back of the bucket to stay open. Therefore, the LWIR pulse remains in the first bucket and there is no frequency upshifting component observed towards the end of the


wake. However, as seen in Fig. 4f, when the density of the IR-CON region is increased further, even stronger self-injection of electrons and the ponderomotive force of the LWIR pulse trapped


inside the first cavity pushes the returning plasma electrons in the sheath at the very back and forces the first bucket to open wide. At this moment, the majority of the LWIR radiation


leaks through this opening into the second bucket. Once the majority of the LWIR radiation has passed, the opening tends to shrink again due to the decrease of the ponderomotive force. Those


LWIR radiation right at the location of the shrinking opening will be frequency upshifted. In this way, a double peanut-shaped wake is formed and this wake structure feature is marked by


the frequency-upshifted component. In the simulations, one can see this frequency-upshifted component of the LWIR pulse at the end of the partially closed first bubble where the negative


refractive index gradient −d_η_/d_ζ_ is positive (orange curve in Fig. 4d), which is consistent with the frequency-upshifting component in the experimental result (in Fig. 4b at _t_ = 100 


fs). In other words, the highly nonlinear, transient wakefield structures are mapped into the transient spectra of the IR pulses. This is but one example of applications of such LWIR pulses


for unraveling the nonlinear optics of relativistic plasmas. There is a good qualitative agreement between the experimental results (Fig. 4a, b) and the simulation results (Fig. 4c–f)


regarding the spectrum, pulse duration, and overall energy of the LWIR pulse (more details are shown in Supplementary Note 3). The one obvious discrepancy is the delay between the MIR pulse


and LWIR pulse. For 400 μm case, the experimental delay is about 120 fs, but the simulated delay is about 50 fs. For 525 μm case, the experimental delay is about 160 fs, but the simulated


delay is about 110 fs. One possible reason is that the real plasma density profiles have longer low-density tails (<7 × 1017 cm−3) that are below the noise level of our density


diagnostics. Low but long density tails may lead to a larger delay between LWIR pulse and MIR pulse due to significantly large group velocity difference between two wavelengths. In


conclusion, the generation of tunable, relativistic, near single-cycle IR pulses, and their applications to self-probing of the highly nonlinear plasma wake has been demonstrated using a


tailored plasma structure. Given that a few TW class, femtoseconds drive lasers in the near-IR are now commonplace, one expects this technique to be adopted in many laboratories to give


intense, tunable LWIR pulses. When scaling this scheme to higher energies using >100 TW lasers, spatio-temporal effects48,49 may affect the laser propagation and wake generation in


plasmas and hence the generation of the LWIR pulse. At relativistic intensities afforded by such sources it will now be possible to study electron injection50,51,52,53,54,55, beam


loading56,57,58, spin polarization59, and emittance60 preservation in large diameter wakes generated in plasmas on one hand and at lower intensities study high harmonic generation3,4,5 and


resonant or non-resonant nonlinear interactions in gases, solids, or biological systems1,2,6,7,8 on the other. METHODS EXPERIMENTAL SETUP A schematic of the experimental setup is shown in


Fig. 1b. The 810 nm, 36 ± 2 fs (FWHM) drive-laser pulse37 (red) with a contrast of 108 containing 580 ± 9 mJ energy is focused onto the low-density side of Gas jet 1 (hydrogen) to a spot


size _w_0 = 13.5 ± 1.0 μm. Approximately 60% of the laser energy is within the beam waist (1/_e_2 of intensity), corresponding to an estimated Strehl ratio of 0.7. The necessary density


structure is produced by inserting a movable blade placed just above the opening of a 3 mm diameter supersonic gas nozzle. The blade partially interrupts the gas flow and induces a shock in


the gas density profile above it. This results in a fluid density profile that has a few-millimeter-long low-density region at the beginning, that transits into a shock-induced


higher-density but shorter (sub-millimeter) region (Fig. 1a). An uncoated calcium fluoride (CaF2) wedge is used to split the laser pulse exiting Gas jet 1 into two beams. The first passes


through the wedge and is filtered using an uncoated germanium (Ge) plate to cut any residual 810 nm light. The transmitted light in the wavelength range between 2 and 20 μm is used for total


IR energy measurement. The reflected portion of the pulse is used for the characterization of the IR pulse as follows: First, the residual drive pulse (_λ_ < 1.5 μm) in the reflected


beam are filtered out by six IR beam splitters coated with indium tin oxide (ITO) so that only the IR photons with _λ_ > 1.5 μm can be transported for characterization. Second, a


synchronized second 810 nm reference pulse (brown) with known temporal amplitude and phase is used for performing a XFROG measurement40. The IR pulse and reference pulse are focused


separately but collinearly using off-axis parabolas and overlap with each other at Gas jet 2 (argon). These two pulses interact with each other through FWM in argon and generate the XFROG


signals (blue) that are measured by a fiber spectrometer after a bandpass color filter. The FWSFG signal is weaker than the FWDFG signal because the former process is less efficient than the


latter in most of the spectral range due to phase mismatch and beam mode mismatch61 (see Supplementary Note 2). Besides, the transmission of the bandpass filter below 360 nm decreases


significantly, which results in a weak FWSFG signal below 360 nm. CHARACTERIZATION OF PLASMA DENSITY STRUCTURES The plasma density structure is produced by a supersonic round nozzle with a


blade covering a portion of the gas jet. We combine online and offline measurements to obtain the plasma density profile. In the online measurement, we use interferometry to acquire the


plateau plasma density (7.2 × 1018 cm−3) in the PC section, since the plasma densities in the IR-CON and OC sections are non-axisymmetric and thus they cannot be retrieved by the Abel


inversion method. In the offline measurement, hydrogen is replaced with argon to get a larger refractive index change. A wavefront sensor (SID-4, PHASICS) camera is used to measure the phase


difference of the neutral argon gas at a particular backing pressure at ten different angles. Then two-dimensional density profiles can be reconstructed by using a tomographic


reconstruction algorithm. It has been verified by fluid simulations that the density profiles of different gases are similar for the same gas pressure. Therefore, the complete plasma density


profile is obtained by multiplying the measured offline density profile (normalized to the plateau density in the PC section) with the measured online plateau density in the PC section (7.2


 × 1018 cm−3). (see Supplementary Note 1). XFROG MEASUREMENT In contrast to standard XFROG measurement usually implemented in a nonlinear crystal40, XFROG measurement here is based on FWM in


argon11. Gaseous media are intrinsically broadband due to low dispersion over a large spectral range, which helps to avoid the stretching of pulses during XFROG measurement and to achieve


broadband FWM phase matching. Therefore, XFROG in gases enables the characterization of ultra-short pulses with ultra-broadband spectra. In our experiment, XFROG traces are obtained by


scanning the delay between the IR pulse and the reference pulse. At each delay, five shots of data are averaged to improve signal-to-noise ratio. The step of the scanning stage is 1 μm


(optical path of 2 μm), corresponding to 6.6 fs in delay. For XFROG retrieval, the intensity and phase information of the reference pulse is obtained (60 shots average, see Supplementary


Fig. 5) by self-referenced spectral interferometry62 with a commercial product Wizzler (Fastlite). The retrieval of temporal/spectral intensity and phase follows standard XFROG retrieval


algorithm41. PIC SIMULATIONS The 3D PIC simulations were carried out using the code OSIRIS44,45 in Cartesian coordinates with a window moving at the speed of light. The _z_-axis was defined


to be the drive laser propagating direction. The simulation window had a dimension of 76 × 76 × 92 μm3 with 400 × 400 × 3600 cells in the _x_, _y_, and _z_ directions, respectively. This


corresponded to cell sizes of \(\Delta x = \Delta y = 1.33k_0^{ - 1}\) and \(\Delta z = 0.20k_0^{ - 1}\) (where \(k_0 = 2\pi \lambda _0^{ - 1}\) is the laser wavevector and _λ_0 = 800 nm).


The number of macro-particles per cell was 8. DATA AVAILABILITY The data that support the findings of this study are available from the corresponding author on reasonable request. REFERENCES


* Meckel, M. et al. Laser-induced electron tunneling and diffraction. _Science_ 320, 1478–1482 (2008). Article  ADS  CAS  PubMed  Google Scholar  * Först, M. et al. Nonlinear phononics as


an ultrafast route to lattice control. _Nat. Phys._ 7, 854–856 (2011). Article  CAS  Google Scholar  * Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from


mid-infrared femtosecond lasers. _Science_ 336, 1287–1291 (2012). Article  ADS  MathSciNet  CAS  PubMed  Google Scholar  * Ghimire, S. et al. Observation of high-order harmonic generation


in a bulk crystal. _Nat. Phys._ 7, 138–141 (2011). Article  CAS  Google Scholar  * Vampa, G. et al. Linking high harmonics from gases and solids. _Nature_ 522, 462–464 (2015). Article  ADS 


CAS  PubMed  Google Scholar  * Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. _Nat. Photonics_ 8, 119–123 (2014). Article  ADS 


CAS  Google Scholar  * Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. _Nature_ 530, 66–70 (2016). Article  ADS  CAS  PubMed  Google


Scholar  * Pupeza, I. et al. Field-resolved infrared spectroscopy of biological systems. _Nature_ 577, 52–59 (2020). Article  ADS  CAS  PubMed  Google Scholar  * Fu, Y., Xue, B., Midorikawa,


K. & Takahashi, E. J. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification. _Appl. Phys. Lett._ 112, 241105 (2018). Article  ADS


  CAS  Google Scholar  * Sanchez, D. et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm. _Optica_ 3, 147 (2016). Article  ADS


  CAS  Google Scholar  * Fuji, T., Nomura, Y. & Shirai, H. Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1. _IEEE J. Sel. Top. Quantum Electron._ 21,


1–12 (2015). Article  CAS  Google Scholar  * Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. _Nat. Photonics_ 9, 721–724 (2015). Article  ADS  CAS


  Google Scholar  * Krogen, P. et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. _Nat. Photonics_ 11, 222–226 (2017). Article  ADS  CAS  Google Scholar


  * Novák, O. et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses. _Opt. Lett._ 43, 1335 (2018). Article  ADS  PubMed  Google Scholar  *


Nie, Z. et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. _Nat. Photonics_ 12, 489–494 (2018). Article  ADS  CAS  Google Scholar  *


Bingham, R., Mendonça, J. T. & Dawson, J. M. Photon Landau damping. _Phys. Rev. Lett._ 78, 247–249 (1997). Article  ADS  CAS  Google Scholar  * Oliveira e Silva, L. & Mendonça, J.


T. Kinetic theory of photon acceleration: time-dependent spectral evolution of ultrashort laser pulses. _Phys. Rev. E_ 57, 3423–3431 (1998). Article  ADS  CAS  Google Scholar  * Reitsma, A.


J. W. et al. Photon kinetic modeling of laser pulse propagation in underdense plasma. _Phys. Plasmas_ 13, 113104 (2006). Article  ADS  CAS  Google Scholar  * Wilks, S. C., Dawson, J. M.,


Mori, W. B., Katsouleas, T. & Jones, M. E. Photon accelerator. _Phys. Rev. Lett._ 62, 2600–2603 (1989). Article  ADS  CAS  PubMed  Google Scholar  * Sprangle, P., Esarey, E. & Ting,


A. Nonlinear theory of intense laser–plasma interactions. _Phys. Rev. Lett._ 64, 2011–2014 (1990). Article  ADS  CAS  PubMed  Google Scholar  * Esarey, E., Ting, A. & Sprangle, P.


Frequency shifts induced in laser pulses by plasma waves. _Phys. Rev. A_ 42, 3526–3531 (1990). Article  ADS  CAS  PubMed  Google Scholar  * Mori, W. B. The physics of the nonlinear optics of


plasmas at relativistic intensities for short-pulse lasers. _IEEE J. Quantum Electron._ 33, 1942–1953 (1997). Article  ADS  CAS  Google Scholar  * Tsung, F. S., Ren, C., Silva, L. O., Mori,


W. B. & Katsouleas, T. Generation of ultra-intense single-cycle laser pulses by using photon deceleration. _Proc. Natl Acad. Sci. USA_ 99, 29–32 (2002). Article  ADS  CAS  PubMed 


Google Scholar  * Gordon, D. F. et al. Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. _Phys. Rev. Lett._ 90, 215001 (2003). Article  ADS  CAS 


PubMed  Google Scholar  * Faure, J. et al. Observation of laser-pulse shortening in nonlinear plasma waves. _Phys. Rev. Lett._ 95, 205003 (2005). Article  ADS  CAS  PubMed  Google Scholar  *


Downer, M. C., Zgadzaj, R., Debus, A., Schramm, U. & Kaluza, M. C. Diagnostics for plasma-based electron accelerators. _Rev. Mod. Phys._ 90, 035002 (2018). Article  ADS  MathSciNet  CAS


  Google Scholar  * Murphy, C. D. et al. Evidence of photon acceleration by laser wake fields. _Phys. Plasmas_ 13, 033108 (2006). Article  ADS  CAS  Google Scholar  * Shiraishi, S. et al.


Laser red shifting based characterization of wakefield excitation in a laser-plasma accelerator. _Phys. Plasmas_ 20, 063103 (2013). Article  ADS  CAS  Google Scholar  * Zhu, W., Palastro, J.


P. & Antonsen, T. M. Studies of spectral modification and limitations of the modified paraxial equation in laser wakefield simulations. _Phys. Plasmas_ 19, 033105 (2012). Article  ADS 


CAS  Google Scholar  * Zhu, W., Palastro, J. P. & Antonsen, T. M. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations. _Phys. Plasmas_ 20, 073103


(2013). Article  ADS  CAS  Google Scholar  * Pai, C.-H. et al. Generation of intense ultrashort midinfrared pulses by laser-plasma interaction in the bubble regime. _Phys. Rev. A_ 82, 063804


(2010). Article  ADS  CAS  Google Scholar  * Schreiber, J. et al. Complete temporal characterization of asymmetric pulse compression in a laser wakefield. _Phys. Rev. Lett._ 105, 235003


(2010). Article  ADS  CAS  PubMed  Google Scholar  * Streeter, M. J. V. et al. Observation of laser power amplification in a self-injecting laser wakefield accelerator. _Phys. Rev. Lett._


120, 254801 (2018). Article  ADS  CAS  PubMed  Google Scholar  * Schmid, K. et al. Density-transition based electron injector for laser driven wakefield accelerators. _Phys. Rev. Spec. Top.


Accel. Beams_ 13, 091301 (2010). Article  ADS  CAS  Google Scholar  * Gonsalves, A. J. et al. Tunable laser plasma accelerator based on longitudinal density tailoring. _Nat. Phys._ 7,


862–866 (2011). Article  CAS  Google Scholar  * Buck, A. et al. Shock-front injector for high-quality laser-plasma acceleration. _Phys. Rev. Lett._ 110, 185006 (2013). Article  ADS  CAS 


PubMed  Google Scholar  * Hung, T.-S. et al. A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction. _Appl. Phys.


B_ 117, 1189–1200 (2014). Article  ADS  CAS  Google Scholar  * Keldysh, L. V. Tunneling theory of multi-photon absorption. _J. Exp. Theor. Phys._ 47, 1945–1957 (1964). CAS  Google Scholar 


* Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. Nonlinear theory for relativistic plasma wakefields in the blowout regime. _Phys. Rev. Lett._ 96, 165002 (2006). Article  ADS


  CAS  PubMed  Google Scholar  * Linden, S., Giessen, H. & Kuhl, J. XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses. _Phys. Status Solidi_ 206,


119–124 (1998). Article  CAS  Google Scholar  * Kane, D. J. Real-time measurement of ultrashort laser pulses using principal component generalized projections. _IEEE J. Sel. Top. Quantum


Electron._ 4, 278–284 (1998). Article  ADS  CAS  Google Scholar  * Mora, P. & Antonsen, T. M. Jr. Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. _Phys.


Plasmas_ 4, 217–229 (1997). Article  ADS  CAS  Google Scholar  * Brizard, A. J. A new Lagrangian formulation for laser-plasma interactions. _Phys. Plasmas_ 5, 1110–1117 (1998). Article  ADS


  CAS  Google Scholar  * Fonseca, R. A. et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In _Computational Science—ICCS


2002_ (eds Sloot, P. et al.) 342–351 (Springer, Berlin, 2002). MATH  Google Scholar  * Fonseca, R. A. et al. One-to-one direct modeling of experiments and astrophysical scenarios: pushing


the envelope on kinetic plasma simulations. _Plasma Phys. Control. Fusion_ 50, 124034 (2008). Article  ADS  Google Scholar  * Buck, A. et al. Real-time observation of laser-driven electron


acceleration. _Nat. Phys._ 7, 543–548 (2011). Article  CAS  Google Scholar  * Sävert, A. et al. Direct observation of the injection dynamics of a laser wakefield accelerator using


few-femtosecond shadowgraphy. _Phys. Rev. Lett._ 115, 055002 (2015). Article  ADS  PubMed  CAS  Google Scholar  * Kahaly, S. et al. Investigation of amplitude spatio-temporal couplings at


the focus of a 100 TW-25 fs laser. _Appl. Phys. Lett._ 104, 054103 (2014). Article  ADS  CAS  Google Scholar  * Gallet, V., Kahaly, S., Gobert, O. & Quéré, F. Dual spectral-band


interferometry for spatio-temporal characterization of high-power femtosecond lasers. _Opt. Lett._ 39, 4687 (2014). Article  ADS  CAS  PubMed  Google Scholar  * Suk, H., Barov, N.,


Rosenzweig, J. B. & Esarey, E. Plasma electron trapping and acceleration in a plasma wake field using a density transition. _Phys. Rev. Lett._ 86, 1011–1014 (2001). Article  ADS  CAS 


PubMed  Google Scholar  * Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. _Nature_ 444, 737–739 (2006). Article  ADS  CAS


  PubMed  Google Scholar  * Oz, E. et al. Ionization-induced electron trapping in ultrarelativistic plasma wakes. _Phys. Rev. Lett._ 98, 084801 (2007). Article  ADS  CAS  PubMed  Google


Scholar  * Hidding, B. et al. Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. _Phys. Rev. Lett._ 108, 035001 (2012).


Article  ADS  CAS  PubMed  Google Scholar  * Li, F. et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield


accelerator. _Phys. Rev. Lett._ 111, 015003 (2013). Article  ADS  CAS  PubMed  Google Scholar  * Xu, X. L. et al. High quality electron bunch generation using a longitudinal density-tailored


plasma-based accelerator in the three-dimensional blowout regime. _Phys. Rev. Accel. Beams_ 20, 111303 (2017). Article  ADS  Google Scholar  * Wilks, S., Katsouleas, T., Dawson, J. M.,


Chen, P. & Su, J. J. Beam loading in plasma waves. _Part. Accel._ 22, 81–99 (1987). Google Scholar  * Tzoufras, M. et al. Beam loading in the nonlinear regime of plasma-based


acceleration. _Phys. Rev. Lett._ 101, 145002 (2008). Article  ADS  CAS  PubMed  Google Scholar  * Couperus, J. P. et al. Demonstration of a beam loaded nanoCoulomb-class laser wakefield


accelerator. _Nat. Commun._ 8, 487 (2017). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Vieira, J., Huang, C. K., Mori, W. B. & Silva, L. O. Polarized beam conditioning


in plasma based acceleration. _Phys. Rev. Spec. Top. Accel. Beams_ 14, 071303 (2011). Article  ADS  CAS  Google Scholar  * Xu, X. L. et al. Physics of phase space matching for staging plasma


and traditional accelerator components using longitudinally tailored plasma profiles. _Phys. Rev. Lett._ 116, 124801 (2016). Article  ADS  CAS  PubMed  Google Scholar  * Hilber, G., Brink,


D. J., Lago, A. & Wallenstein, R. Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters. _Phys. Rev. A_ 38, 6231–6239 (1988). Article  ADS 


CAS  Google Scholar  * Oksenhendler, T. et al. Self-referenced spectral interferometry. _Appl. Phys. B_ 99, 7–12 (2010). Article  ADS  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors thank Yau-Hsin Hsieh, Shih-Chi Kao, and Yao-Li Liu for helping with experiments. The authors also thank Professor Takao Fuji for a fruitful discussion of the


XFROG measurement in gases. This work was supported by the National Natural Science Foundation of China (NSFC) grants (Nos. 11535006, 11991071, 11875175, 11775125, and 11425521); the Air


Force Office of Scientific Research (AFOSR) under Award Number FA9550-16-1-0139 DEF, the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI)


(4-442521-JC-22891), the U.S. Department of Energy grant DE-SC001006; and the Ministry of Science and Technology of Taiwan under Grant No. MOST-105-2112-M-001-005-M3. The simulations were


performed on Sunway TaihuLight and the resources of the National Energy Research Scientific Computing Center. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Key Laboratory of Particle and


Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China Zan Nie, Chih-Hao Pai, Jie Zhang, Xiaonan Ning, Jianfei Hua, 


Yunxiao He, Yipeng Wu, Qianqian Su, Shuang Liu, Yue Ma, Zhi Cheng & Wei Lu * University of California Los Angeles, Los Angeles, CA, 90095, USA Zan Nie, Chaojie Zhang, Warren B. Mori 


& Chan Joshi * State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China Wei Lu * Department of Physics, National


Central University, Jhongli, 32001, Taiwan Hsu-Hsin Chu & Jyhpyng Wang * Center for High Energy and High Field Physics, National Central University, Jhongli, 32001, Taiwan Hsu-Hsin Chu 


& Jyhpyng Wang * Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan Jyhpyng Wang * Department of Physics, National Taiwan University, Taipei, 10617,


Taiwan Jyhpyng Wang Authors * Zan Nie View author publications You can also search for this author inPubMed Google Scholar * Chih-Hao Pai View author publications You can also search for


this author inPubMed Google Scholar * Jie Zhang View author publications You can also search for this author inPubMed Google Scholar * Xiaonan Ning View author publications You can also


search for this author inPubMed Google Scholar * Jianfei Hua View author publications You can also search for this author inPubMed Google Scholar * Yunxiao He View author publications You


can also search for this author inPubMed Google Scholar * Yipeng Wu View author publications You can also search for this author inPubMed Google Scholar * Qianqian Su View author


publications You can also search for this author inPubMed Google Scholar * Shuang Liu View author publications You can also search for this author inPubMed Google Scholar * Yue Ma View


author publications You can also search for this author inPubMed Google Scholar * Zhi Cheng View author publications You can also search for this author inPubMed Google Scholar * Wei Lu View


author publications You can also search for this author inPubMed Google Scholar * Hsu-Hsin Chu View author publications You can also search for this author inPubMed Google Scholar * Jyhpyng


Wang View author publications You can also search for this author inPubMed Google Scholar * Chaojie Zhang View author publications You can also search for this author inPubMed Google


Scholar * Warren B. Mori View author publications You can also search for this author inPubMed Google Scholar * Chan Joshi View author publications You can also search for this author


inPubMed Google Scholar CONTRIBUTIONS W.L., J.W., and C.J. conceived and supervised the project. C.-H.P., Z.N., Q.S., S.L., Y.M., and Z.C. developed the XFROG method for IR pulse


measurement. J.H. led the development of plasma source. Z.N. and Y.H. performed the plasma density measurement. Z.N., J.Z., X.N., C.-H.P., H.-H.C., and J.H. carried out the LWIR pulse


generation and measurement experiments. Z.N. performed the simulations. C.J., W.L., and Z.N. wrote the paper. C.J., W.L., J.W., Z.N., C.-H.P., J.H., Y.W., C.Z., and W.B.M. discussed the


results and commented on the paper. CORRESPONDING AUTHORS Correspondence to Chih-Hao Pai, Jianfei Hua, Wei Lu or Jyhpyng Wang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Communications_ thanks Subhendu Kahaly and the other, anonymous, reviewer(s) for their contribution to the peer


review of this work. Peer reviewer reports are available. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION PEER REVIEW FILE RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0


International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the


source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative


Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by


statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit


http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Nie, Z., Pai, CH., Zhang, J. _et al._ Photon deceleration in plasma wakes generates


single-cycle relativistic tunable infrared pulses. _Nat Commun_ 11, 2787 (2020). https://doi.org/10.1038/s41467-020-16541-w Download citation * Received: 19 November 2019 * Accepted: 01 May


2020 * Published: 03 June 2020 * DOI: https://doi.org/10.1038/s41467-020-16541-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative