Play all audios:
ABSTRACT Venus is the least understood of the terrestrial planets. Despite broad similarities to the Earth in mass and size, Venus has no evidence of plate tectonics recorded on its young
surface, and Venus’s atmosphere is strikingly different. Numerical experiments of long-term planetary evolution have sought to understand Venus’s thermal–tectonic history with indeterminate
results. However, Venus’s atmosphere is linked to interior evolution and can be used as a diagnostic to constrain planetary evolution. Here we compare the present-day Venusian atmosphere to
atmospheres generated by long-term thermal–chemical–tectonic evolution models. We find that a continuous single-plate stagnant lid regime operating since antiquity (magma ocean
solidification) explains neither the present-day observed atmospheric abundances of N2 and CO2, nor the surface pressure. Instead, the Venusian atmosphere requires volcanic outgassing in an
early phase of plate-tectonic-like activity. Our findings indicate that Venus’s atmosphere results from a great climatic–tectonic transition, from an early phase of active lid tectonics that
lasted for at least 1 Gyr, followed by the current stagnant lid-like mode of reduced outgassing rates. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access
subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more
Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:
* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A NITROGEN-RICH ATMOSPHERE ON ANCIENT MARS CONSISTENT
WITH ISOTOPIC EVOLUTION MODELS Article 10 February 2022 THE FUTURE LIFESPAN OF EARTH’S OXYGENATED ATMOSPHERE Article 01 March 2021 THE EROSION OF LARGE PRIMARY ATMOSPHERES TYPICALLY LEAVES
BEHIND SUBSTANTIAL SECONDARY ATMOSPHERES ON TEMPERATE ROCKY PLANETS Article Open access 27 September 2024 DATA AVAILABILITY Data used to generate Figs. 1–4 are available at
https://doi.org/10.5281/zenodo.7570178. CODE AVAILABILITY MATLAB is a commercial code. The C parametrized thermal evolution code used here and described in the Methods sections, in addition
to the MATLAB analysis code(s), are available from the authors upon reasonable request. REFERENCES * Bullock, M. A. & Grinspoon, D. H. The recent evolution of climate on Venus. _Icarus_
150, 19–37 (2001). Article ADS Google Scholar * Schaber, G. G. et al. Geology and distribution of impact craters on Venus: what are they telling us? _J. Geophys. Res._ 97, 13257–13301
(1992). Article ADS Google Scholar * Strom, R. G., Schaber, G. G. & Dawson, D. D. The global resurfacing of Venus. _J. Geophys. Res. Planets_ 99, 10899–10926 (1994). Article ADS
Google Scholar * Way, M. J. et al. Was Venus the first habitable world of our solar system? _Geophys. Res. Lett._ 43, 8376–8383 (2016). Article ADS Google Scholar * Weller, M. B. &
Kiefer, W. S. The physics of changing tectonic regimes: Implications for the temporal evolution of mantle convection and the thermal history of Venus. _J. Geophys. Res. Planets_ 125,
e2019JE005960 (2020). Article ADS Google Scholar * Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. _Nat. Geosci._ 13, 265 (2020).
Article ADS Google Scholar * Gillmann, C. & Tackley, P. Atmosphere/mantle coupling and feedbacks on Venus. _J. Geophys. Res. Planets_ 119, 1189–1217 (2014). Article ADS Google
Scholar * Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. _J. Geophys. Res._
125, e2019JE006276 (2020). Article ADS Google Scholar * Solomon, S. C. et al. Venus tectonics - An overview of Magellan observations. _J. Geophys. Res. Planets_ 97, 13199–13255 (1992).
Article ADS Google Scholar * Phillips, R. J., Bullock, M. A. & Hauck, S. A. Climate and interior coupled evolution on Venus. _Geophys. Res. Lett._ 28, 1779–1782 (2001). Article ADS
Google Scholar * McGill, G. E. Venus tectonics: another Earth or another Mars? _Geophys. Res. Lett._ 6, 739–741 (1979). Article ADS Google Scholar * Kaula, W. M. & Phillips, R. J.
Quantitative tests for plate tectonics on Venus. _Geophys. Res. Lett._ 8, 1187–1190 (1981). Article ADS Google Scholar * Schubert, G., Turcotte, D. L. & Olson, P. _Mantle Convection
in the Earth and Planets_ (Cambridge Univ. Press, 2001). * Cann, J. R. et al. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges.
_Philos. Trans. R. Soc. A._ 355, 283–318 (1997). Article Google Scholar * Nimmo, F. & Stevenson, D. J. Influence of early plate tectonics on the thermal evolution and magnetic field of
Mars. _J. Geophys. Res. Planets_ 105, 11969–11979 (2000). Article ADS Google Scholar * Guimond, C. M., Noack, L., Ortenzi, G. & Sohl, F. Low volcanic outgassing rates for a stagnant
lid archean Earth with graphite-saturated magmas. _Phys. Earth Planet. Inter._ 320, 106788 (2021). Article Google Scholar * Noack, L., Rivoldini, A. & Van Hoolst, T. Volcanism and
outgassing of stagnant-lid planets: Implications for the habitable zone. _Phys. Earth Planet. Inter._ 269, 40–57 (2017). Article ADS Google Scholar * Som, S. M. et al. Earth’s air
pressure 2.7 billion years ago constrained to less than half of modern levels. _Nat. Geosci._ 9, 448–451 (2016). Article ADS Google Scholar * Stüeken, E. E. et al. Mission to planet
Earth: the first two billion years. _Space Sci. Rev._ 216, 31 (2020). Article ADS Google Scholar * Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on
Earth. _Earth Planet. Sci. Lett._ 313, 56–66 (2012). Article ADS Google Scholar * Boujibar, A., Driscoll, P. & Fei, Y. Super-earth internal structures and initial thermal states. _J.
Geophys. Res._ 125, e2019JE006124 (2020). Article ADS Google Scholar * Taylor, F. & Grinspoon, D. Climate evolution of Venus. _J. Geophys. Res_. https://doi.org/10.1029/2008JE003316
(2009). * Breuer, D. & Moore, W. B. in _Treatise on Geophysics_ (ed. Gerald Schubert) 299–348 (Elsevier, 2007). * Warren, A. O. & Kite, E. S. Narrow range of early habitable Venus
scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. _Proc. Natl Acad. Sci._ 120, e2209751120 (2023). Article Google Scholar * Walker, J. C. G., Hays, P. B. &
Kasting, J. F. A negative feedback mechanism for the long-term stabilization of the Earth’s surface temperature. _J. Geophys. Res._ 86, 9776 (1981). Article ADS Google Scholar * Rolf, T.
et al. Dynamics and evolution of Venus’ mantle through time. _Space Sci. Rev._ 218, 70 (2022). Article ADS Google Scholar * Solomatov, V. S. & Moresi, L. N. Stagnant lid convection
on Venus. _J. Geophys. Res._ 101, 4737–4753 (1996). Article ADS Google Scholar * Bjonnes, E., Johnson, B. C. & Evans, A. J. Estimating Venusian thermal conditions using multiring
basin morphology. _Nat. Astron_ 5, 498–502 (2021). Article ADS Google Scholar * Zolotov, M. Y. Gas–solid interactions on venus and other solar system bodies. _Rev. Mineral. Geochem._ 84,
351–392 (2018). Article Google Scholar * Taylor, F. W., Svedhem, H. & Head, J. W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet.
_Space Sci. Rev._ https://doi.org/10.1007/s11214-018-0467-8 (2018). * Johnstone, C. P., Lammer, H., Kislyakova, K. G., Scherf, M. & Güdel, M. The young sun’s XUV-activity as a constraint
for lower CO2-limits in the Earth’s archean atmosphere. _Earth Planet. Sci. Lett._ 576, 117197 (2021). Article Google Scholar * Weller, M. B., Lenardic, A. & O’Neill, C. The effects
of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. _Earth Planet. Sci. Lett._ 420, 85–94 (2015). Article ADS Google Scholar * Weller,
M. B. & Lenardic, A. On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. _Geosci. Front_ 9, 91–102 (2018). Article
Google Scholar * O’Neill, C. et al. A window for plate tectonics in terrestrial planet evolution? _Phys. Earth Planet. Inter._ 255, 80–92 (2016). Article ADS Google Scholar * Lécuyer,
C., Simon, L. & Guyot, F. Comparison of carbon, nitrogen and water budgets on Venus and the Earth. _Earth Planet. Sci. Lett._ 181, 33 (2000). Article ADS Google Scholar * Namiki, N.
& Solomon, S. C. Volcanic degassing of argon and helium and the history of crustal production on Venus. _J. Geophys. Res._ 103, 3655 (1998). Article ADS Google Scholar * Kaula, W. M.
Constraints on Venus evolution from radiogenic argon. _Icarus_ 139, 32 (1999). Article ADS Google Scholar * Hoffman, J. H., Hodges, R. R., Donahue, T. M. & McElroy, M. B. Composition
of the Venus lower atmosphere from the Pioneer Venus Mass Spectrometer. _J. Geophys. Res. Space Phys._ 85, 7882–7890 (1980). Article ADS Google Scholar * Halliday, A. N. The origins of
volatiles in the terrestrial planets. _Geochim. Cosmochim. Acta_ 105, 146–171 (2013). Article ADS Google Scholar * Krissansen-Totton, J., Fortney, J. J. & Nimmo, F. Was Venus ever
habitable? Constraints from a coupled interior–atmosphere–redox evolution model. _Planet. Sci. J._ 2, 216 (2021). Article Google Scholar * Bierson, C. J. & Zhang, X. Chemical cycling
in the Venusian atmosphere: a full photochemical model from the surface to 110 km. _J. Geophys. Res._ 125, e2019JE006159 (2020). Article ADS Google Scholar * Lenardic, A., Jellinek, A. M.
& Moresi, L. N. A climate induced transition in the tectonic style of a terrestrial planet. _Earth Planet. Sci. Lett._ 271, 34–42 (2008). Article ADS Google Scholar * Foley, B. J.,
Bercovici, D. & Landuyt, W. The conditions for plate tectonics on super-Earths: inferences from convection models with damage. _Earth Planet. Sci. Lett._ 331–332, 281–290 (2012). Article
ADS Google Scholar * Byrne, P. K. et al. A globally fragmented and mobile lithosphere on Venus. _Proc. Natl Acad. Sci._ 118, e2025919118 (2021). Article Google Scholar * Filiberto, J.,
Trang, D., Treiman, A. H. & Gilmore, M. S. Present-day volcanism on Venus as evidenced from weathering rates of olivine. _Sci. Adv._ 6, eaax7445 (2020). Article ADS Google Scholar *
Tian, F., Kasting, J. F., Liu, H.-L. & Roble, R. G. Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the
significance of adiabatic cooling. _J. Geophys. Res_. https://doi.org/10.1029/2007JE002946 (2008). * Grasset, O. & Parmentier, E. M. Thermal convection in a volumetrically heated,
infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution. _J. Geophys. Res. Solid Earth_ 103, 18171–18181 (1998). Article
Google Scholar * Sandu, C. & Kiefer, W. S. Degassing history of Mars and the lifespan of its magnetic dynamo. _Geophys. Res. Lett._ 39, L03201 (2012). Article ADS Google Scholar *
Sandu, C., Lenardic, A. & McGovern, P. The effects of deep water cycling on planetary thermal evolution. _J. Geophys. Res. Solid Earth_ 116, B12404 (2011). Article ADS Google Scholar
* Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. _Earth Planet. Sci. Lett._ 308, 391–400 (2011). Article ADS Google Scholar *
Morschhauser, A., Grott, M. & Breuer, D. Crustal recycling, mantle dehydration, and the thermal evolution of Mars. _Icarus_ 212, 541–558 (2011). Article ADS Google Scholar * Weller,
M. B., Lenardic, A. & Moore, W. B. Scaling relationships and physics for mixed heating convection in planetary interiors: isoviscous spherical shells. _J. Geophys. Res. Solid Earth_ 121,
7598–7617 (2016). Article ADS Google Scholar * Schubert, G. Subsolidus convection in the mantles of terrestrial planets. _Annu. Rev. Earth Planet. Sci._ 7, 289–342 (1979). Article ADS
Google Scholar * Schubert, G., Stevenson, D. & Cassen, P. Whole planet cooling and the radiogenic heat source contents of the Earth and moon. _J. Geophys. Res. Solid Earth_ 85,
2531–2538 (1980). Article Google Scholar * Stevenson, D. J., Spohn, T. & Schubert, G. Magnetism and thermal evolution of the terrestrial planets. _Icarus_ 54, 466–489 (1983). Article
ADS Google Scholar * Hirth, G. & Kohlstedt, D. in _Inside the Subduction Factory_, Vol. 138 (ed. Eiler, J.) 83–105 (AGU Geophysical Monograph, 2003). * Liebske, C. et al. Viscosity of
peridotite liquid up to 13 GPa: implications for magma ocean viscosities. _Earth Planet. Sci. Lett._ 240, 589–604 (2005). Article ADS Google Scholar * Karato, S. & Wu, P. Rheology of
the upper mantle: a synthesis. _Science_ 260, 771–778 (1993). Article ADS Google Scholar * Li, Z.-X. A., Lee, C.-T. A., Peslier, A. H., Lenardic, A. & Mackwell, S. J. Water contents
in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. _J. Geophys. Res. Solid Earth_ 113
https://doi.org/10.1029/2007JB005540 (2008). * McKenzie, D. The generation and compaction of partially molten rock. _J. Petrol._ 25, 713–765 (1984). Article ADS Google Scholar *
McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. _J. Petrol._ 29, 625–679 (1988). Article ADS Google Scholar * Katz, R. F.,
Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. _Geochemistry, Geophys. Geosystems_ 4, 1073 (2003). Article ADS Google Scholar * Hirschmann, M. M.
The mantle solidus: experimental constraints and the effect of peridotite composition. _Geochemistry Geophys. Geosystems_ https://doi.org/10.1029/2000GC000070 (2000). * Maaløe, S. The
solidus of harzburgite to 3 GPa pressure: the compositions of primary abyssal tholeiite. _Mineral. Petrol._ 81, 1–17 (2004). Article ADS Google Scholar * Ohtani, E., Nagata, Y., Suzuki,
A. & Kato, T. Melting relations of peridotite and the density crossover in planetary mantles. _Chem. Geol._ 120, 207–221 (1995). Article ADS Google Scholar * Ohtani, E., Suzuki, A.
& Kato, T. in _Properties of Earth and Planetary Materials at High Pressure and Temperature_ (eds Manghnani, M. H. & Yagi, T.) 227–239 (American Geophysical Union, 1998). * Hauck, S.
A. & Phillips, R. J. Thermal and crustal evolution of Mars. _J. Geophys. Res. Planets_ https://doi.org/10.1029/2001je001801 (2002). * Grott, M., Breuer, D. & Laneuville, M.
Thermo-chemical evolution and global contraction of Mercury. _Earth Planet. Sci. Lett._ 307, 135–146 (2011). Article ADS Google Scholar * O’Neill, C., Lenardic, A., Jellinek, A. M. &
Kiefer, W. S. Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. _J. Geophys. Res_.
https://doi.org/10.1029/2006JE002799 (2007). * Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and
implications for planetary atmospheres. _Earth Planet. Sci. Lett._ 403, 307–316 (2014). Article ADS Google Scholar * McDonough, W. F. & Sun, S. S. The composition of the Earth. _Chem.
Geol._ 120, 223–253 (1995). Article ADS Google Scholar * Herd, C. D. K. Basalts as probes of planetary interior redox state. _Rev. Mineral. Geochem._ 68, 527–553 (2008). Article Google
Scholar * Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. _Nature_ 363, 428–431 (1993). Article ADS Google Scholar * Marty, B. &
Yokochi, R. Water in the early Earth. _Rev. Mineral. Geochem._ 62, 421–450 (2006). Article Google Scholar * Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the
Earth’s interior: distribution and origin. _Space Sci. Rev._ 212, 743–810 (2017). Article ADS Google Scholar * Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour
undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. _Nature_ 419, 451–455 (2002). Article ADS Google Scholar * Grewal, D. S., Dasgupta,
R., Hough, T. & Farnell, A. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. _Nat. Geosci._ 14, 369–376 (2021). Article ADS Google Scholar *
Baines, K. H. et al. in _Comparative Climatology of Terrestrial Planets_ (eds Bullock, M. A., Mackwell, S. J., Simon-Miller, A. A. & Harder, J. W.) 137–160 (Univ. of Arizona Press,
2013). Download references ACKNOWLEDGEMENTS This work was supported by funds provided by A.J.E., Brown University and NASA’s Solar System Workings programme (grant number 80NSSC23K0167),
which partially funded M.B.W. Additional support was provided through the USRA/LPI Urey fellowship for M.B.W. AUTHOR INFORMATION Author notes * Matthew B. Weller Present address: The Lunar
and Planetary Institute/USRA, Houston, TX, USA AUTHORS AND AFFILIATIONS * Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA Matthew B. Weller,
Alexander J. Evans & Daniel E. Ibarra * Institute at Brown for Environment and Society, Brown University, Providence, RI, USA Daniel E. Ibarra * Department of Earth and Planetary
Sciences, University of California, Berkeley, CA, USA Daniel E. Ibarra * Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA Alexandria V.
Johnson Authors * Matthew B. Weller View author publications You can also search for this author inPubMed Google Scholar * Alexander J. Evans View author publications You can also search for
this author inPubMed Google Scholar * Daniel E. Ibarra View author publications You can also search for this author inPubMed Google Scholar * Alexandria V. Johnson View author publications
You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.B.W., A.J.E. and A.V.J. conceptualized the project. A.J.E., M.B.W. and D.E.I. devised the methodology and M.B.W.
and A.J.E. performed the investigation. Visualization was done by M.B.W. Funding acquisition was handled by M.B.W. and A.J.E. All authors contributed to the writing and editing of the
manuscript. CORRESPONDING AUTHOR Correspondence to Matthew B. Weller. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION
_Nature Astronomy_ thanks Helmut Lammer, Cedric Gillmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Text
1–6, Table 1 and Figs. 1–9. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Weller, M.B., Evans, A.J., Ibarra, D.E. _et al._ Venus’s atmospheric nitrogen explained by ancient plate tectonics. _Nat
Astron_ 7, 1436–1444 (2023). https://doi.org/10.1038/s41550-023-02102-w Download citation * Received: 22 December 2022 * Accepted: 12 September 2023 * Published: 26 October 2023 * Issue
Date: December 2023 * DOI: https://doi.org/10.1038/s41550-023-02102-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry,
a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative