Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production

Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production

Play all audios:

Loading...

ABSTRACT The molecular apparatus behind biological photosynthesis retains its long-term functionality through enzymatic repair. However, bioinspired molecular devices designed for artificial


photosynthesis, consisting of a photocentre, a bridging ligand and a catalytic centre, can become unstable and break down when their individual modules are structurally compromised, halting


their overall functionality and operation. Here we report the active repair of such an artificial photosynthetic molecular device, leading to complete recovery of catalytic activity. We


have identified the hydrogenation of the bridging ligand, which inhibits the light-driven electron transfer between the photocentre and catalytic centre, as the deactivation mechanism. As a


means of repair, we used the light-driven generation of singlet oxygen, catalysed by the photocentre, to enable the oxidative dehydrogenation of the bridging unit, which leads to the


restoration of photocatalytic hydrogen formation. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more


Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DUAL DONOR-ACCEPTOR COVALENT ORGANIC FRAMEWORKS FOR HYDROGEN PEROXIDE PHOTOSYNTHESIS Article Open access 28 August 2023 A


PHOTOSENSITIZER–POLYOXOMETALATE DYAD THAT ENABLES THE DECOUPLING OF LIGHT AND DARK REACTIONS FOR DELAYED ON-DEMAND SOLAR HYDROGEN PRODUCTION Article 27 January 2022 HYDROGEN-BONDED ORGANIC


FRAMEWORKS FOR PHOTOCATALYTIC SYNTHESIS OF HYDROGEN PEROXIDE Article Open access 12 March 2025 DATA AVAILABILITY Source data are provided with this paper and can also be found via Zenodo


(https://doi.org/10.5281/zenodo.5565021). All other data supporting the findings of this study are available within the paper and its Supplementary Information files. REFERENCES * Acar, C.,


Dincer, I. & Zamfirescu, C. A review on selected heterogeneous photocatalysts for hydrogen production. _Int. J. Energy Res._ 38, 1903–1920 (2014). Article  CAS  Google Scholar  *


Hoffert, M. I. et al. Energy implications of future stabilization of atmospheric CO2 content. _Nature_ 395, 881–884 (1998). Article  CAS  Google Scholar  * Lewis, N. S. & Nocera, D. G.


Powering the planet: chemical challenges in solar energy utilization. _Proc. Natl Acad. Sci. USA_ 103, 15729–15735 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Hammarström, L. Towards artificial photosynthesis: ruthenium–manganese chemistry mimicking photosystem II reactions. _Curr. Opin. Chem. Biol._ 7, 666–673 (2003). Article  PubMed  CAS  Google


Scholar  * Andreiadis, E. S., Chavarot-Kerlidou, M., Fontecave, M. & Artero, V. Artificial photosynthesis: from Molecular catalysts for light-driven water splitting to


photoelectrochemical cells. _Photochem. Photobiol._ 87, 946–964 (2011). Article  CAS  PubMed  Google Scholar  * Balzani, V. Photochemical molecular devices. _Photochem. Photobiol. Sci._ 2,


459–476 (2003). Article  CAS  PubMed  Google Scholar  * Ceroni, P., Credi, A., Venturi, M. & Balzani, V. Light-powered molecular devices and machines. _Photochem. Photobiol. Sci._ 9,


1561–1573 (2010). Article  CAS  PubMed  Google Scholar  * Barber, J. Photosystem II: the water-splitting enzyme of photosynthesis. _Cold Spring Harb. Symp. Quant. Biol._ 77, 295–307 (2012).


Article  CAS  PubMed  Google Scholar  * Blankenship, R. E. _Molecular Mechanisms of Photosynthesis_ (Blackwell Science, 2002); https://doi.org/10.1002/9780470758472 * Gamage, D. et al. New


insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. _Plant.Cell Environ._ 41, 1233–1246 (2018). Article  CAS  PubMed  Google Scholar


  * Barber, J. & Andersson, B. Revealing the blueprint of photosynthesis. _Nature_ 370, 31–34 (1994). Article  CAS  Google Scholar  * Kato, Y. & Sakamoto, W. Protein quality control


in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. _J. Biochem._ 146, 463–469 (2009). Article  CAS  PubMed  Google Scholar  * Kanan, M. W. &


Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. _Science_ 321, 1072–1075 (2008). * Kärkäs, M. D., Verho, O., Johnston, E. V.


& Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. _Chem. Rev._ 114, 11863–12001 (2014). Article  PubMed  CAS  Google Scholar  * Rau, S., Walther,


D. & Vos, J. G. Inspired by nature: light driven organometallic catalysis by heterooligonuclear Ru(II) complexes. _Dalton Trans_. 915–919 (2007). * Kim, D., Whang, D. R. & Park, S.


Y. Self-healing of molecular catalyst and photosensitizer on metal–organic framework: robust molecular system for photocatalytic H2 evolution from water. _J. Am. Chem. Soc._ 138, 8698–8701


(2016). Article  CAS  PubMed  Google Scholar  * Elvington, M., Brown, J., Arachchige, S. M. & Brewer, K. J. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular


device for photoinitiated electron collection. _J. Am. Chem. Soc._ 129, 10644–10645 (2007). Article  CAS  PubMed  Google Scholar  * White, T. A., Higgins, S. L. H., Arachchige, S. M. &


Brewer, K. J. Efficient photocatalytic hydrogen production in a single-component system using Ru,Rh,Ru supramolecules containing 4,7-diphenyl-1,10-phenanthroline. _Angew. Chem. Int. Ed._ 50,


12209–12213 (2011). Article  CAS  Google Scholar  * Manbeck, G. F. & Brewer, K. J. Photoinitiated electron collection in polyazine chromophores coupled to water reduction catalysts for


solar H2 production. _Coord. Chem. Rev._ 257, 1660–1675 (2013). Article  CAS  Google Scholar  * Pfeffer, M. G. et al. Palladium versus platinum: the metal in the catalytic center of a


molecular photocatalyst determines the mechanism of the hydrogen production with visible light. _Angew. Chem. Int. Ed._ 54, 5044–5048 (2015). Article  CAS  Google Scholar  * Steel, P. J.


& Constable, E. C. Synthesis, spectroscopy, and electrochemistry of homo- and hetero-leptic ruthenium(II) complexes of new pyrazole-containing bidentate ligands. _J. Chem. Soc. Dalton


Trans_. 1389–1396 (1990). * Berardi, S. et al. Molecular artificial photosynthesis. _Chem. Soc. Rev._ 43, 7501–7519 (2014). Article  CAS  PubMed  Google Scholar  * Ozawa, H., Haga, M. &


Sakai, K. A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. _J. Am. Chem. Soc._ 128, 4926–4927 (2006). Article  CAS 


PubMed  Google Scholar  * Rau, S. et al. A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. _Angew. Chem. Int. Ed._ 45, 6215–6218


(2006). Article  CAS  Google Scholar  * Suneesh, C. V. et al. Mechanistic studies of photoinduced intramolecular and intermolecular electron transfer processes in RuPt-centred


photo-hydrogen-evolving molecular devices. _Phys. Chem. Chem. Phys._ 16, 1607–1616 (2014). Article  CAS  PubMed  Google Scholar  * Pfeffer, M. G. et al. Optimization of hydrogen-evolving


photochemical molecular devices. _Angew. Chem. Int. Ed._ 54, 6627–6631 (2015). Article  CAS  Google Scholar  * Kaufhold, S., Imanbaew, D., Riehn, C. & Rau, S. Rational in situ tuning of


a supramolecular photocatalyst for hydrogen evolution. _Sustain. Energy Fuels_ 1, 2066–2070 (2017). Article  CAS  Google Scholar  * Zedler, L. et al. Unraveling the light‐activated reaction


mechanism in a catalytically competent key intermediate of a multifunctional molecular catalyst for artificial photosynthesis. _Angew. Chem. Int. Ed._ 58, 13140–13148 (2019). Article  CAS 


Google Scholar  * Davidson, R. S. & Trethewey, K. R. Photosensitised oxidation of amines: mechanism of oxidation of triethylamine. _J. Chem. Soc. Perkin Trans_. 2, 173–178 (1977). *


Jiang, G., Chen, J., Huang, J.-S. & Che, C.-M. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions. _Org. Lett._ 11, 4568–4571


(2009). Article  CAS  PubMed  Google Scholar  * Alonso, A. M. et al. Generation of strong, homochiral bases by electrochemical reduction of phenazine derivatives. _Chem. Commun_. 412–413


(2004). * Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. _J. Am. Chem. Soc._ 140, 1004–1010 (2018). Article  CAS 


PubMed  Google Scholar  * Ji, Z., He, M., Huang, Z., Ozkan, U. & Wu, Y. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. _J. Am. Chem. Soc._ 135,


11696–11699 (2013). Article  CAS  PubMed  Google Scholar  * Zedler, L. et al. Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic


complexes. _Chem. Commun._ 50, 5227–5229 (2014). * Konduri, R. et al. Ruthenium photocatalysts capable of reversibly storing up to four electrons in a single acceptor ligand: a step closer


to artificial photosynthesis. _Angew. Chem. Int. Ed._ 41, 3185–3187 (2002). Article  CAS  Google Scholar  * Konduri, R., de Tacconi, N. R., Rajeshwar, K. & MacDonnell, F. M.


Multielectron photoreduction of a bridged ruthenium dimer, [(phen)2Ru(tatpp)Ru(phen)2][PF6]4: aqueous reactivity and chemical and spectroelectrochemical identification of the photoproducts.


_J. Am. Chem. Soc._ 126, 11621–11629 (2004). Article  CAS  PubMed  Google Scholar  * Anne, A., Hapiot, P., Moiroux, J., Neta, P. & Saveant, J. M. Dynamics of proton transfer from cation


radicals. Kinetic and thermodynamic acidities of cation radicals of NADH analogs. _J. Am. Chem. Soc._ 114, 4694–4701 (1992). Article  CAS  Google Scholar  * Zhang, X. et al. Dynamics of


.alpha.-CH deprotonation and .alpha.-desilylation reactions of tertiary amine cation radicals. _J. Am. Chem. Soc._ 116, 4211–4220 (1994). Article  CAS  Google Scholar  * Schmittel, M. &


Burghart, A. Understanding reactivity patterns of radical cations. _Angew. Chem. Int. Ed. Engl._ 36, 2550–2589 (1997). Article  Google Scholar  * Pellegrin, Y. & Odobel, F. Sacrificial


electron donor reagents for solar fuel production. _C. R. Chim._ 20, 283–295 (2017). Article  CAS  Google Scholar  * McGovern, D. A., Selmi, A., O’Brien, J. E., Kelly, J. M. & Long, C.


Reduction of dipyrido-[3,2-a:2′,3′-c]-phenazine (dppz) by photolysis in ethanol solution. _Chem. Commun_. 1402–1404 (2005). * Juliarena, M. P. et al. On the association and structure of


radicals derived from dipyridil[3,2-a:2′3′-c]phenazine. Contrast between the electrochemical, radiolytic, and photochemical reduction processes. _J. Org. Chem_. 71, 2870–2873 (2006). * Ruiz,


G. T., Juliarena, M. P., Lezna, R. O., Feliz, M. R. & Ferraudi, G. On the parallel formation of long-lived excited states of dipyridil[3,2-a:2′3′-c]phenazine, dppz. _J. Photochem.


Photobiol. A_ 179, 289–297 (2006). * Guo, W. & Obare, S. O. Tuning the reduction of 9,11,20,22-tetraaza-tetrapyridopentacene (TATPP). _Tetrahedron Lett._ 49, 4933–4936 (2008). Article 


CAS  Google Scholar  * Mulazzani, Q. G. et al. The reduction of Ru(bpy)2(dipyridophenazine)2+ in aqueous solution. A radiolytic study. _New J. Chem._ 13, 441–447 (1989). CAS  Google Scholar


  * Tschierlei, S. et al. Photophysics of an Intramolecular hydrogen-evolving Ru–Pd photocatalyst. _Chem. Eur. J._ 15, 7678–7688 (2009). Article  CAS  PubMed  Google Scholar  * Creutz, C.


& Sutin, N. Electron-transfer reactions of excited states: direct evidence for reduction of the charge-transfer excited state of tris(2,2′-bipyridine)ruthenium(II). _J. Am. Chem. Soc._


98, 6384–6385 (1976). Article  CAS  Google Scholar  * Anderson, C. P., Salmon, D. J., Meyer, T. J. & Young, R. C. Photochemical generation of Ru(bpy)3+ and O2–. _J. Am. Chem. Soc._ 99,


1980–1982 (1977). Article  CAS  Google Scholar  * Mulazzani, Q. G., Emmi, S., Fuochi, P. G., Hoffman, M. Z. & Venturi, M. On the nature of tris(2,2′-bipyridine)ruthenium(1+) ion in


aqueous solution. _J. Am. Chem. Soc._ 100, 981–983 (1978). Article  CAS  Google Scholar  * Baron, A. et al. Efficient electron transfer through a triazole link in ruthenium(II) polypyridine


type complexes. _Chem. Commun._ 47, 11011–11013 (2011). * Carolin, M., Friedländer, I., Bagemihl B., Rau, S. & Dietzek-Ivanšić, B. The electron that breaks the catalyst’s back—excited


state dynamics in intermediates of molecular photocatalysts. _Phys. Chem. Chem. Phys._ 23, 27397–27403 (2021). * Wang, C., Li, C., Wu, X., Pettman, A. & Xiao, J. pH-regulated asymmetric


transfer hydrogenation of quinolines in water. _Angew. Chem. Int. Ed._ 48, 6524–6528 (2009). Article  CAS  Google Scholar  * Zhang, L. et al. Versatile


(pentamethylcyclopentadienyl)rhodium-2,2′-bipyridine (Cp*Rh-bpy) catalyst for transfer hydrogenation of N-heterocycles in water. _Adv. Synth. Catal._ 357, 3529–3537 (2015). Article  CAS 


Google Scholar  * Rau, S. et al. Photoinduced ligand transformation in a ruthenium polypyridophenazine complex. _Eur. J. Inorg. Chem._ 2008, 1031–1034 (2008). Article  CAS  Google Scholar  *


Chakrabortty, S. et al. Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. _J. Am. Chem. Soc._ 139, 2512–2519 (2017). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Li, M. Y. et al. Quenching of singlet molecular oxygen (1O2) by azide anion in solvent mixtures. _Photochem. Photobiol._ 74, 760-764 (2001). * Kozak, P. J.


& Gesser, H. The photolysis of triethylamine, and reactions of methyl radicals with triethylamine and diethylamine. _J. Chem. Soc_. 448–452 (1960). * Torriero, A. A. J., Shiddiky, M. J.


A., Burgar, I. & Bond, A. M. Homogeneous electron-transfer reaction between electrochemically generated ferrocenium ions and amine-containing compounds. _Organometallics_ 32, 5731–5739


(2013). Article  CAS  Google Scholar  * Amthor, S. et al. Tailored protective groups for surface immobilization of ruthenium dyes. _Dalton Trans._ 49, 3735–3742 (2020). Article  CAS  PubMed


  Google Scholar  Download references ACKNOWLEDGEMENTS We thank the German Science Foundation for funding via the TRR 234 CataLight (project number 364549901; project A1, C.M., B.D.-I. and


S.R.; project B4, M.W.; project C5, P.S., S.K. and S.G), the Fonds der Chemischen Industrie (Kekulé-Stipendium, C.M.) and the Studienstiftung des Deutschen Volkes (PhD scholarship, B.B.). We


acknowledge the developers of the KiMoPack software employed for global lifetime analysis of the time-resolved spectra. All calculations were performed at the Universitätsrechenzentrum


(Friedrich Schiller University Jena, P.S., S.K. and S.G.). The funding organizations had no role in study design, data collection and analysis, decision to publish or preparation of the


manuscript. AUTHOR INFORMATION Author notes * These authors contributed equally: Michael G. Pfeffer, Carolin Müller. AUTHORS AND AFFILIATIONS * Institute of Inorganic Chemistry I (Materials


and Catalysis), Ulm University, Ulm, Germany Michael G. Pfeffer, Evelyn T. E. Kastl, Alexander K. Mengele, Benedikt Bagemihl, Sven S. Fauth, Johannes Habermehl, Lydia Petermann & Sven


Rau * Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany Carolin Müller, Martin Schulz, Phillip Seeber, Stephan Kupfer, Stefanie Gräfe & Benjamin


Dietzek-Ivanšić * Leibniz Institute of Photonic Technology, Jena, Germany Carolin Müller, Maria Wächtler & Benjamin Dietzek-Ivanšić * Abbe Center of Photonics, Jena, Germany Maria


Wächtler * Department of Chemistry, University of Montréal, Montréal, Québec, Canada Daniel Chartrand, François Laverdière & Garry S. Hanan * SRC for Solar Energy Conversion, School of


Chemical Sciences, Dublin City University, Dublin, Ireland Johannes G. Vos * Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena, Jena, Germany Benjamin


Dietzek-Ivanšić Authors * Michael G. Pfeffer View author publications You can also search for this author inPubMed Google Scholar * Carolin Müller View author publications You can also


search for this author inPubMed Google Scholar * Evelyn T. E. Kastl View author publications You can also search for this author inPubMed Google Scholar * Alexander K. Mengele View author


publications You can also search for this author inPubMed Google Scholar * Benedikt Bagemihl View author publications You can also search for this author inPubMed Google Scholar * Sven S.


Fauth View author publications You can also search for this author inPubMed Google Scholar * Johannes Habermehl View author publications You can also search for this author inPubMed Google


Scholar * Lydia Petermann View author publications You can also search for this author inPubMed Google Scholar * Maria Wächtler View author publications You can also search for this author


inPubMed Google Scholar * Martin Schulz View author publications You can also search for this author inPubMed Google Scholar * Daniel Chartrand View author publications You can also search


for this author inPubMed Google Scholar * François Laverdière View author publications You can also search for this author inPubMed Google Scholar * Phillip Seeber View author publications


You can also search for this author inPubMed Google Scholar * Stephan Kupfer View author publications You can also search for this author inPubMed Google Scholar * Stefanie Gräfe View author


publications You can also search for this author inPubMed Google Scholar * Garry S. Hanan View author publications You can also search for this author inPubMed Google Scholar * Johannes G.


Vos View author publications You can also search for this author inPubMed Google Scholar * Benjamin Dietzek-Ivanšić View author publications You can also search for this author inPubMed 


Google Scholar * Sven Rau View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.G.P., E.T.E.K. and D.C. performed the catalysis experiments,


C.M. performed the steady-state and time-dependent in situ spectroscopic studies, and M.S. and M.W. synthesized and investigated the hydrogenated photocatalyst. M.G.P., A.K.M., B.B., S.F.,


J.H., D.C., F.L., G.S.H. and S.R. developed the active repair strategies. P.S., S.K. and S.G. conducted the quantum chemical simulations. M.G.P, C.M., L.P., G.S.H., J.G.V., A.K.M., B.D.-I.


and S.R. wrote the manuscript with help from all the other authors. CORRESPONDING AUTHORS Correspondence to Benjamin Dietzek-Ivanšić or Sven Rau. ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Chemistry_ thanks Ken Sakai, Claudia Turro and the other, anonymous, reviewer(s) for their contribution to


the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–27, Tables 1–4, Discussion and Experimental Details. SOURCE DATA SOURCE DATA FIG. 1 Hydrogen turnover numbers and


chemical structures. SOURCE DATA FIG. 2 In situ absorption data and chemical structures. SOURCE DATA FIG. 3 In situ absorption and ultrafast transient absorption data, hydrogen turnover


numbers (mean, s.d., _n_ = 3) and peak area ratios. SOURCE DATA FIG. 4 Absorption data. SOURCE DATA FIG. 5 Hydrogen turnover numbers and chemical structures. RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Pfeffer, M.G., Müller, C., Kastl, E.T.E. _et al._ Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen


production. _Nat. Chem._ 14, 500–506 (2022). https://doi.org/10.1038/s41557-021-00860-6 Download citation * Received: 20 August 2020 * Accepted: 19 November 2021 * Published: 07 February


2022 * Issue Date: May 2022 * DOI: https://doi.org/10.1038/s41557-021-00860-6 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative