Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut

Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut

Play all audios:

Loading...

ABSTRACT Loss of diversity in the gut microbiome can persist for extended periods after antibiotic treatment, impacting microbiome function, antimicrobial resistance and probably host


health. Despite widespread antibiotic use, our understanding of the species and metabolic functions contributing to gut microbiome recovery is limited. Using data from 4 discovery cohorts in


3 continents comprising >500 microbiome profiles from 117 individuals, we identified 21 bacterial species exhibiting robust association with ecological recovery post antibiotic therapy.


Functional and growth-rate analysis showed that recovery is supported by enrichment in specific carbohydrate-degradation and energy-production pathways. Association rule mining on 782


microbiome profiles from the MEDUSA database enabled reconstruction of the gut microbial ‘food web’, identifying many recovery-associated bacteria as keystone species, with the ability to


use host- and diet-derived energy sources, and support repopulation of other gut species. Experiments in a mouse model recapitulated the ability of recovery-associated bacteria (_Bacteroides


thetaiotaomicron_ and _Bifidobacterium adolescentis_) to promote recovery with synergistic effects, providing a boost of two orders of magnitude to microbial abundance in early time points


and faster maturation of microbial diversity. The identification of specific species and metabolic functions promoting recovery opens up opportunities for rationally determining pre- and


probiotic formulations offering protection from long-term consequences of frequent antibiotic usage. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS POPULATION-LEVEL IMPACTS OF ANTIBIOTIC USAGE ON THE HUMAN


GUT MICROBIOME Article Open access 02 March 2023 LONG-TERM ECOLOGICAL AND EVOLUTIONARY DYNAMICS IN THE GUT MICROBIOMES OF CARBAPENEMASE-PRODUCING ENTEROBACTERIACEAE COLONIZED SUBJECTS


Article Open access 15 September 2022 DIFFERENTIAL RESPONSES OF THE GUT MICROBIOME AND RESISTOME TO ANTIBIOTIC EXPOSURES IN INFANTS AND ADULTS Article Open access 22 December 2023 DATA


AVAILABILITY Illumina sequencing data for this study (mouse models) are available from the Sequence Read Archive under project ID SRP142225. Samples are labelled in SRA with a shorthand (for


example, PBS6D22, where ‘PBS’ represents the gavage condition, ‘6’ represents the cage number, and ‘D22’ represents the day of sampling). CODE AVAILABILITY Analysis scripts used for


generating the figures in this study are available at https://github.com/CSB5/Recovery_Determinants_Study. REFERENCES * Marchesi, J. R. et al. The gut microbiota and host health: a new


clinical frontier. _Gut_ 65, 330–339 (2016). PubMed  Google Scholar  * Bäumler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. _Nature_


535, 85–93 (2016). PubMed  PubMed Central  Google Scholar  * Kampmann, C., Dicksved, J., Engstrand, L. & Rautelin, H. Composition of human faecal microbiota in resistance to


_Campylobacter_ infection. _Clin. Microbiol. Infect._ 22, 61.e1–61.e8 (2016). CAS  Google Scholar  * Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial


consortia to disease. _Nature_ 535, 94–103 (2016). CAS  PubMed  Google Scholar  * Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.


_Science_ 359, 91–97 (2018). CAS  PubMed  Google Scholar  * Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. _Science_ 359, 97–103


(2018). CAS  PubMed  Google Scholar  * Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S


rRNA sequencing. _PLoS Biol._ 6, e280 (2008). PubMed  PubMed Central  Google Scholar  * Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of


the salivary microbiome versus long-term microbial shifts in feces. _mBio_ 6, e01693-01615 (2015). Google Scholar  * Perez-Cobas, A. E. et al. Gut microbiota disturbance during antibiotic


therapy: a multi-omic approach. _Gut_ 62, 1591–1601 (2013). CAS  PubMed  Google Scholar  * Klein, E. Y. et al. Global increase and geographic convergence in antibiotic consumption between


2000 and 2015. _Proc. Natl Acad. Sci. USA_ 115, E3463–E3470 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Blaser, M. J. & Falkow, S. What are the consequences of the


disappearing human microbiota?. _Nat. Rev. Microbiol._ 7, 887–894 (2009). CAS  PubMed  Google Scholar  * Blaser, M. J. Antibiotic use and its consequences for the normal microbiome.


_Science_ 352, 544–545 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Stevens, V., Dumyati, G., Fine, L. S., Fisher, S. G. & van Wijngaarden, E. Cumulative antibiotic exposures


over time and the risk of _Clostridium difficile_ infection. _Clin. Infect. Dis._ 53, 42–48 (2011). PubMed  Google Scholar  * Smillie, C. S. et al. Ecology drives a global network of gene


exchange connecting the human microbiome. _Nature_ 480, 241–244 (2011). CAS  PubMed  Google Scholar  * Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands


the resistance reservoir and ecological network of the phage metagenome. _Nature_ 499, 219–222 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Raymond, F. et al. The initial state of


the human gut microbiome determines its reshaping by antibiotics. _ISME J._ 10, 707–720 (2016). CAS  PubMed  Google Scholar  * Livanos, A. E. et al. Antibiotic-mediated gut microbiome


perturbation accelerates development of type 1 diabetes in mice. _Nat. Microbiol._ 1, 16140 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Cox, L. M. & Blaser, M. J. Antibiotics


in early life and obesity. _Nat. Rev. Endocrinol._ 11, 182–190 (2015). PubMed  Google Scholar  * Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome


throughout development and alternative approaches for therapeutic modulation. _Genome Med._ 8, 39 (2016). PubMed  PubMed Central  Google Scholar  * Dethlefsen, L. & Relman, D. A.


Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. _Proc. Natl Acad. Sci. USA_ 108, 4554–4561 (2011). CAS  PubMed 


Google Scholar  * Jakobsson, H. E. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. _PLoS ONE_ 5, e9836 (2010). PubMed  PubMed


Central  Google Scholar  * Raymond, F., Deraspe, M., Boissinot, M., Bergeron, M. G. & Corbeil, J. Partial recovery of microbiomes after antibiotic treatment. _Gut Microbes_ 7, 428–434


(2016). CAS  PubMed  PubMed Central  Google Scholar  * Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. _Nat. Microbiol._ 3, 1255–1265 (2018).


CAS  PubMed  Google Scholar  * Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. _Cell_ 174, 1406–1423 (2018).


CAS  PubMed  Google Scholar  * Harvey, E., Gounand, I., Ward, C. L., Altermatt, F. & Cadotte, M. Bridging ecology and conservation: from ecological networks to ecosystem function. _J.


Appl. Ecol._ 54, 371–379 (2017). Google Scholar  * Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. _Phil. Trans. R. Soc. B_ 364, 1781–1787 (2009).


PubMed  PubMed Central  Google Scholar  * The Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. _Nature_ 486, 207–214 (2012). PubMed


Central  Google Scholar  * Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. _Clin. Microbiol. Rev._ 20, 593–621 (2007). CAS  PubMed  PubMed Central  Google Scholar  *


Faust, K. & Raes, J. Microbial interactions: from networks to models. _Nat. Rev. Microbiol._ 10, 538–550 (2012). CAS  PubMed  Google Scholar  * Solden, L. M. et al. Interspecies


cross-feeding orchestrates carbon degradation in the rumen ecosystem. _Nat. Microbiol._ 3, 1274–1284 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Adamowicz, E. M., Flynn, J.,


Hunter, R. C. & Harcombe, W. R. Cross-feeding modulates antibiotic tolerance in bacterial communities. _ISME J._ 12, 2723–2735 (2018). CAS  PubMed  PubMed Central  Google Scholar  *


Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. _Nat. Rev. Microbiol._ 14, 508–522 (2016). CAS  PubMed  Google Scholar  * David, L. A. et al. Diet


rapidly and reproducibly alters the human gut microbiome. _Nature_ 505, 559–563 (2014). CAS  PubMed  Google Scholar  * Rothschild, D. et al. Environment dominates over host genetics in


shaping human gut microbiota. _Nature_ 555, 210–215 (2018). CAS  PubMed  Google Scholar  * Sokol, H. et al. _Faecalibacterium prausnitzii_ is an anti-inflammatory commensal bacterium


identified by gut microbiota analysis of Crohn disease patients. _Proc. Natl Acad. Sci. USA_ 105, 16731–16736 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Takahashi, K. et al.


Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. _Digestion_ 93, 59–65 (2016). CAS  PubMed  Google Scholar  * El Kaoutari, A.,


Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. _Nat. Rev. Microbiol._ 11, 497–504 (2013).


CAS  PubMed  Google Scholar  * Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. _Science_ 349, 1101–1106 (2015). CAS  PubMed


  PubMed Central  Google Scholar  * Sicard, J. F., Le Bihan, G., Vogeleer, P., Jacques, M. & Harel, J. Interactions of intestinal bacteria with components of the intestinal mucus.


_Front. Cell. Infect. Microbiol._ 7, 387 (2017). PubMed  PubMed Central  Google Scholar  * Karlsson, F. H., Nookaew, I. & Nielsen, J. Metagenomic data utilization and analysis (MEDUSA)


and construction of a global gut microbial gene catalogue. _PLoS Comput. Biol._ 10, e1003706 (2014). PubMed  PubMed Central  Google Scholar  * Gauffin Cano, P., Santacruz, A., Moya, A. &


Sanz, Y. _Bacteroides uniformis_ CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. _PLoS ONE_ 7, e41079 (2012). PubMed  PubMed


Central  Google Scholar  * Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. _Gut Microbes_ 3, 289–306 (2012).


PubMed  PubMed Central  Google Scholar  * Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. _Front. Genet._ 6, 81 (2015). PubMed


  PubMed Central  Google Scholar  * Arike, L. & Hansson, G. C. The densely _O_-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. _J. Mol.


Biol._ 428, 3221–3229 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Finnie, I. A., Dwarakanath, A. D., Taylor, B. A. & Rhodes, J. M. Colonic mucin synthesis is increased by


sodium butyrate. _Gut_ 36, 93–99 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Willemsen, L. E., Koetsier, M. A., van Deventer, S. J. & van Tol, E. A. Short chain fatty acids


stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. _Gut_ 52, 1442–1447 (2003). CAS  PubMed  PubMed


Central  Google Scholar  * Cornick, S., Tawiah, A. & Chadee, K. Roles and regulation of the mucus barrier in the gut. _Tissue Barriers_ 3, e982426 (2015). PubMed  PubMed Central  Google


Scholar  * Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. _Cell_ 165,


1332–1345 (2016). CAS  PubMed  Google Scholar  * Wampach, L. et al. Colonization and succession within the human gut microbiome by Archaea, Bacteria, and Microeukaryotes during the first


year of life. _Front. Microbiol._ 8, 738 (2017). * Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. _Science_ 341, 1241214 (2013). PubMed 


Google Scholar  * Jiang, T. et al. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity.


_Nutrients_ 8, 126 (2016). PubMed  PubMed Central  Google Scholar  * Wei, Y. et al. Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss


of diversity of gut flora. _BMC Microbiol._ 16, 255 (2016). PubMed  PubMed Central  Google Scholar  * Onrust, L. et al. Steering endogenous butyrate production in the intestinal tract of


broilers as a tool to improve gut health. _Front. Vet. Sci._ 2, 75 (2015). PubMed  PubMed Central  Google Scholar  * Scott, K. P., Martin, J. C., Duncan, S. H. & Flint, H. J. Prebiotic


stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. _FEMS Microbiol. Ecol._ 87, 30–40 (2014). CAS  PubMed  Google Scholar  * Van den Abbeele, P. et al.


Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for _Bacteroidetes_ and _Clostridium_ cluster IX. _Appl. Environ. Microbiol._ 76,


5237–5246 (2010). PubMed  PubMed Central  Google Scholar  * Sung, J. et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis.


_Nat. Commun._ 8, 15393 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, _Bacteroides


thetaiotaomicron_, to sense and respond to stimuli in the murine gut microbiota. _Cell Syst._ 1, 62–71 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Li, H. & Durbin, R. Fast and


accurate long-read alignment with Burrows–Wheeler transform. _Bioinformatics_ 26, 589–595 (2010). PubMed  PubMed Central  Google Scholar  * Abubucker, S. et al. Metabolic reconstruction for


metagenomic data and its application to the human microbiome. _PLoS Comput. Biol._ 8, e1002358 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Segata, N. et al. Metagenomic microbial


community profiling using unique clade-specific marker genes. _Nat. Methods_ 9, 811–814 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Franzosa, E. A. et al. Species-level


functional profiling of metagenomes and metatranscriptomes. _Nat. Methods_ 15, 962–968 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Quast, C. et al. The SILVA ribosomal RNA gene


database project: improved data processing and web-based tools. _Nucleic Acids Res._ 41, D590–D596 (2013). CAS  PubMed  Google Scholar  * Langille, M. G. et al. Predictive functional


profiling of microbial communities using 16S rRNA marker gene sequences. _Nat. Biotechnol._ 31, 814–821 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Wu, G. D. et al. Linking


long-term dietary patterns with gut microbial enterotypes. _Science_ 334, 105–108 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Segata, N. et al. Metagenomic biomarker discovery and


explanation. _Genome Biol._ 12, R60 (2011). PubMed  PubMed Central  Google Scholar  * Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. _Nucleic


Acids Res._ 40, W445–W451 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial


genomes. _Antimicrob. Agents Chemother._ 58, 212–220 (2014). PubMed  PubMed Central  Google Scholar  * Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification


using exact alignments. _Genome Biol._ 15, R46 (2014). PubMed  PubMed Central  Google Scholar  * Cantarel, B. L., Lombard, V. & Henrissat, B. Complex carbohydrate utilization by the


healthy human microbiome. _PLoS ONE_ 7, e28742 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Hipp, J., Güntzer, U. & Nakhaeizadeh, G. Algorithms for association rule mining–a


general survey and comparison. _ACM SIGKDD Explor. Newsl._ 2, 58–64 (2000). Google Scholar  * Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular


interaction networks. _Genome Res._ 13, 2498–2504 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Magnusdottir, S. et al. Generation of genome-scale metabolic reconstructions for 773


members of the human gut microbiota. _Nat. Biotechnol._ 35, 81–89 (2017). CAS  PubMed  Google Scholar  * Ravikrishnan, A., Blank, L. M., Srivastava, S. & Raman, K. Investigating


metabolic interactions in a microbial co-culture through integrated modelling and experiments. _Comput. Struct. Biotechnol. J._ 18, 1249–1258 (2020). * Buchfink, B., Xie, C. & Huson, D.


H. Fast and sensitive protein alignment using DIAMOND. _Nat. Methods_ 12, 59–60 (2015). CAS  PubMed  Google Scholar  * Huson, D. H., Mitra, S., Ruscheweyh, H. J., Weber, N. & Schuster,


S. C. Integrative analysis of environmental sequences using MEGAN4. _Genome Res._ 21, 1552–1560 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Chua, M. C. et al. Effect of synbiotic


on the gut microbiota of caesarean delivered infants: a randomized, double-blind, multicenter study. _J. Pediatr. Gastroenterol. Nutr._ 65, 102–106 (2017). * Xu, J. et al. A genomic view of


the human–_Bacteroides thetaiotaomicron_ symbiosis. _Science_ 299, 2074–2076 (2003). CAS  PubMed  Google Scholar  * Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M. & Michel, G.


Environmental and gut bacteroidetes: the food connection. _Front. Microbiol._ 2, 93 (2011). PubMed  PubMed Central  Google Scholar  * Fernandez-Duarte, K. P., Olaya-Galan, N. N.,


Salas-Cardenas, S. P., Lopez-Rozo, J. & Gutierrez-Fernandez, M. F. _Bifidobacterium adolescentis_ (DSM 20083) and _Lactobacillus casei_ (Lafti L26-DSL): probiotics able to block the in


vitro adherence of rotavirus in MA104 cells. _Probiotics Antimicrob. Proteins_ 10, 56–63 (2017). * Thomas, L. V., Ockhuizen, T. & Suzuki, K. Exploring the influence of the gut microbiota


and probiotics on health: a symposium report. _Br. J. Nutr._ 112, S1–S18 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Riviere, A., Selak, M., Lantin, D., Leroy, F. & De Vuyst,


L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. _Front. Microbiol._ 7, 979 (2016). PubMed  PubMed Central  Google


Scholar  * Lee, D. K. et al. Probiotic bacteria, _B. longum_ and _L. acidophilus_ inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. _Clin.


Res. Hepatol. Gastroenterol._ 39, 237–244 (2015). PubMed  Google Scholar  * Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention


study with inulin-type fructans in obese women. _Gut_ 62, 1112–1121 (2013). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by funding from the


National Healthcare Group (NHG-CSCS/12008), the National Medical Research Council, the National Research Foundation and A*STAR, Singapore. AUTHOR INFORMATION Author notes * These authors


contributed equally: Kern Rei Chng, Tarini Shankar Ghosh, Yi Han Tan, Tannistha Nandi. AUTHORS AND AFFILIATIONS * Genome Institute of Singapore, Singapore, Singapore Kern Rei Chng, Tarini


Shankar Ghosh, Tannistha Nandi, Amanda Hui Qi Ng, Chenhao Li, Aarthi Ravikrishnan, Kar Mun Lim, Swaine L. Chen & Niranjan Nagarajan * APC Microbiome Ireland, University College Cork,


Cork, Ireland Tarini Shankar Ghosh * Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Yi Han Tan, Ivor Russel Lee, David Lye, Louis Chai, Yunn-Hwen Gan


 & Niranjan Nagarajan * National Centre for Infectious Disease, Singapore, Singapore David Lye & Barnaby Young * Lee Kong Chian School of Medicine, Nanyang Technological University,


Singapore, Singapore David Lye & Barnaby Young * Tan Tock Seng Hospital, Singapore, Singapore David Lye, Timothy Barkham & Barnaby Young * Department of Biotechnology, Bhupat and


Jyoti Mehta School of Biological Sciences, Indian Institute of Technology (IIT) Madras, Chennai, India Karthik Raman * Initiative for Biological Systems Engineering, IIT Madras, Chennai,


India Karthik Raman * Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), IIT Madras, Chennai, India Karthik Raman * Division of Infectious Diseases, University


Medicine Cluster, National University Health System, Singapore, Singapore Louis Chai Authors * Kern Rei Chng View author publications You can also search for this author inPubMed Google


Scholar * Tarini Shankar Ghosh View author publications You can also search for this author inPubMed Google Scholar * Yi Han Tan View author publications You can also search for this author


inPubMed Google Scholar * Tannistha Nandi View author publications You can also search for this author inPubMed Google Scholar * Ivor Russel Lee View author publications You can also search


for this author inPubMed Google Scholar * Amanda Hui Qi Ng View author publications You can also search for this author inPubMed Google Scholar * Chenhao Li View author publications You can


also search for this author inPubMed Google Scholar * Aarthi Ravikrishnan View author publications You can also search for this author inPubMed Google Scholar * Kar Mun Lim View author


publications You can also search for this author inPubMed Google Scholar * David Lye View author publications You can also search for this author inPubMed Google Scholar * Timothy Barkham


View author publications You can also search for this author inPubMed Google Scholar * Karthik Raman View author publications You can also search for this author inPubMed Google Scholar *


Swaine L. Chen View author publications You can also search for this author inPubMed Google Scholar * Louis Chai View author publications You can also search for this author inPubMed Google


Scholar * Barnaby Young View author publications You can also search for this author inPubMed Google Scholar * Yunn-Hwen Gan View author publications You can also search for this author


inPubMed Google Scholar * Niranjan Nagarajan View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.N., Y.-H.G., B.Y. and S.L.C. planned and


designed the project. B.Y., L.C., T.B. and D.L. contributed the clinical cohorts. Y.H.T. and I.R.L. performed the mouse experiments, with resulting data analysed by T.N. under the guidance


of Y.-H.G. and N.N. A.H.Q.N. and K.M.L. conducted wet-lab experiments with guidance from K.R.C. and N.N. T.S.G., K.R.C., A.R., C.L. and T.N. coordinated computational analysis with


supervision by K.R. and N.N. T.S.G., T.N., A.R., K.R.C. and N.N. wrote the manuscript with input from all authors. CORRESPONDING AUTHORS Correspondence to Barnaby Young, Yunn-Hwen Gan or


Niranjan Nagarajan. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION Peer reviewer reports are available.


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION


Supplementary Figs. 1–11, Table 1 and Note 1. REPORTING SUMMARY PEER REVIEW INFORMATION SUPPLEMENTARY DATA 1 Species abundance profile across samples from the different cohorts.


SUPPLEMENTARY DATA 2 Differentially abundant species in recoverers versus non-recoverers. SUPPLEMENTARY DATA 3 Inferred metabolic pathway abundances across samples from the different


cohorts. SUPPLEMENTARY DATA 4 Inferred CAZyme abundances across samples from the different cohorts. SUPPLEMENTARY DATA 5 PTR values for different species and the computed community growth


rate per sample from the different cohorts. SUPPLEMENTARY DATA 6 Microbial dependency relationships in the gut microbiome predicted via association rule mining on the MEDUSA database.


SUPPLEMENTARY DATA 7 Metabolic support index values for interactions between various RAB species and the corresponding top 10% of interactions. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chng, K.R., Ghosh, T.S., Tan, Y.H. _et al._ Metagenome-wide association analysis identifies microbial determinants of post-antibiotic


ecological recovery in the gut. _Nat Ecol Evol_ 4, 1256–1267 (2020). https://doi.org/10.1038/s41559-020-1236-0 Download citation * Received: 18 December 2019 * Accepted: 28 May 2020 *


Published: 06 July 2020 * Issue Date: September 2020 * DOI: https://doi.org/10.1038/s41559-020-1236-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative