Play all audios:
ABSTRACT Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually
exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of
the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the
impact of nuclear organization on antigenic variation in the protozoan pathogens _Trypanosoma brucei_ and _Plasmodium falciparum_. In particular, we highlight the relevance of nuclear
organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation. Access through your institution Buy or subscribe This is a preview of
subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value
online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue
Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL
ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS STAGE-SPECIFIC TRANSCRIPTION ACTIVATOR
ESB1 REGULATES MONOALLELIC ANTIGEN EXPRESSION IN _TRYPANOSOMA BRUCEI_ Article Open access 25 July 2022 SPATIAL INTEGRATION OF TRANSCRIPTION AND SPLICING IN A DEDICATED COMPARTMENT SUSTAINS
MONOGENIC ANTIGEN EXPRESSION IN AFRICAN TRYPANOSOMES Article 11 January 2021 GENOMIC DETERMINANTS OF ANTIGEN EXPRESSION HIERARCHY IN AFRICAN TRYPANOSOMES Article Open access 12 March 2025
REFERENCES * Janeway, C., Travers, P., Walport, M. & Schlomchik, M. _Immunobiology_ 5th edn (Elsevier España, 2001). * Gupta, S., Ferguson, N. & Anderson, R. Chaos, persistence, and
evolution of strain structure in antigenically diverse infectious agents. _Science_ 280, 912–915 (1998). CAS PubMed Google Scholar * Deitsch, K. W., Lukehart, S. A. & Stringer, J. R.
Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. _Nat. Rev. Microbiol._ 7, 493–503 (2009). CAS PubMed PubMed Central Google Scholar *
Wisniewski-Dyé, F. & Vial, L. Phase and antigenic variation mediated by genome modifications. _Antonie Van Leeuwenhoek_ 94, 493–515 (2008). PubMed Google Scholar * Petrova, V. N. &
Russell, C. A. The evolution of seasonal influenza viruses. _Nat. Rev. Microbiol._ 16, 47–60 (2018). CAS PubMed Google Scholar * Prucca, C. G., Rivero, F. D. & Lujan, H. D.
Regulation of antigenic variation in _Giardia lamblia_. _Annu. Rev. Microbiol._ 65, 611–630 (2011). CAS PubMed Google Scholar * Al-Khedery, B. & Allred, D. R. Antigenic variation in
_Babesia bovis_ occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. _Mol. Microbiol._ 59, 402–414 (2006). CAS PubMed
Google Scholar * Schwede, A., Jones, N., Engstler, M. & Carrington, M. The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. _Mol. Biochem. Parasitol._ 175,
201–204 (2011). CAS PubMed PubMed Central Google Scholar * Mugnier, M. R., Cross, G. A. & Papavasiliou, F. N. The in vivo dynamics of antigenic variation in _Trypanosoma brucei_.
_Science_ 347, 1470–1473 (2015). CAS PubMed PubMed Central Google Scholar * Ramey-Butler, K., Ullu, E., Kolev, N. G. & Tschudi, C. Synchronous expression of individual metacyclic
variant surface glycoprotein genes in _Trypanosoma brucei_. _Mol. Biochem. Parasitol._ 200, 1–4 (2015). CAS PubMed PubMed Central Google Scholar * Barry, J. D. et al. VSG gene control
and infectivity strategy of metacyclic stage _Trypanosoma brucei_. _Mol. Biochem. Parasitol._ 91, 93–105 (1998). CAS PubMed Google Scholar * Hutchinson, S. et al. The establishment of
variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of _Trypanosoma brucei_ in the tsetse fly salivary glands. _PLoS Pathog._ 17, e1009904 (2021). CAS PubMed
PubMed Central Google Scholar * Scherf, A., Lopez-Rubio, J. J. & Riviere, L. Antigenic variation in _Plasmodium falciparum_. _Annu. Rev. Microbiol._ 62, 445–470 (2008). CAS PubMed
Google Scholar * Kyes, S. A., Rowe, J. A., Kriek, N. & Newbold, C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with
_Plasmodium falciparum_. _Proc. Natl Acad. Sci. USA_ 96, 9333–9338 (1999). CAS PubMed PubMed Central Google Scholar * Niang, M., Yan Yam, X. & Preiser, P. R. The _Plasmodium
falciparum_ STEVOR multigene family mediates antigenic variation of the infected erythrocyte. _PLoS Pathog._ 5, e1000307 (2009). PubMed PubMed Central Google Scholar * Miller, L. H.,
Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. _Nature_ 415, 673–679 (2002). CAS PubMed Google Scholar * Real, E., Nardella, F., Scherf, A. &
Mancio-Silva, L. Repurposing of _Plasmodium falciparum_ var genes beyond the blood stage. _Curr. Opin. Microbiol._ 70, 102207 (2022). CAS PubMed Google Scholar * Jerkovic, I. &
Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. _Nat. Rev. Mol. Cell Biol._ 22, 511–528 (2021). CAS PubMed Google Scholar * Cosentino, R. O., Brink, B. G.
& Siegel, T. N. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. _NAR Genom. Bioinform._ 3, lqab082
(2021). PubMed PubMed Central Google Scholar * Wickstead, B., Ersfeld, K. & Gull, K. The small chromosomes of _Trypanosoma brucei_ involved in antigenic variation are constructed
around repetitive palindromes. _Genome Res._ 14, 1014–1024 (2004). CAS PubMed PubMed Central Google Scholar * Lopez-Rubio, J. J. et al. 5′ flanking region of var genes nucleate histone
modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. _Mol. Microbiol._ 66, 1296–1305 (2007). CAS PubMed PubMed Central Google Scholar *
Perez-Toledo, K. et al. _Plasmodium falciparum_ heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. _Nucleic
Acids Res._ 37, 2596–2606 (2009). CAS PubMed PubMed Central Google Scholar * Gardner, M. J. et al. Genome sequence of the human malaria parasite _Plasmodium falciparum_. _Nature_ 419,
498–511 (2002). CAS PubMed Google Scholar * Figueiredo, L. M., Freitas-Junior, L. H., Bottius, E., Olivo-Marin, J. C. & Scherf, A. A central role for _Plasmodium falciparum_
subtelomeric regions in spatial positioning and telomere length regulation. _EMBO J._ 21, 815–824 (2002). CAS PubMed PubMed Central Google Scholar * Otto, T. D. et al. Long read
assemblies of geographically dispersed _Plasmodium falciparum_ isolates reveal highly structured subtelomeres. _Wellcome Open Res._ 3, 52 (2018). PubMed PubMed Central Google Scholar *
Freitas-Junior, L. H. et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of _P. falciparum_. _Nature_ 407, 1018–1022 (2000). CAS PubMed Google
Scholar * Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of _Plasmodium falciparum_-infected erythrocytes. _Cell_ 82,
89–100 (1995). CAS PubMed Google Scholar * Kraemer, S. M. et al. Patterns of gene recombination shape var gene repertoires in _Plasmodium falciparum_: comparisons of geographically
diverse isolates. _BMC Genom._ 8, 45 (2007). Google Scholar * Kyes, S. et al. _Plasmodium falciparum_ var gene expression is developmentally controlled at the level of RNA polymerase
II-mediated transcription initiation. _Mol. Microbiol._ 63, 1237–1247 (2007). CAS PubMed Google Scholar * Schieck, E., Pfahler, J. M., Sanchez, C. P. & Lanzer, M. Nuclear run-on
analysis of var gene expression in _Plasmodium falciparum_. _Mol. Biochem. Parasitol._ 153, 207–212 (2007). CAS PubMed Google Scholar * Calderwood, M. S., Gannoun-Zaki, L., Wellems, T. E.
& Deitsch, K. W. _Plasmodium falciparum var_ genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. _J. Biol.
Chem._ 278, 34125–34132 (2003). CAS PubMed Google Scholar * Epp, C., Li, F., Howitt, C. A., Chookajorn, T. & Deitsch, K. W. Chromatin associated sense and antisense noncoding RNAs are
transcribed from the var gene family of virulence genes of the malaria parasite _Plasmodium falciparum_. _RNA_ 15, 116–127 (2009). CAS PubMed PubMed Central Google Scholar * Siegel, T.
N. et al. Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in _Plasmodium falciparum_. _BMC Genom._ 15, 150 (2014).
Google Scholar * Duraisingh, M. T. et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in _Plasmodium falciparum_. _Cell_ 121, 13–24 (2005). CAS
PubMed Google Scholar * Navarro, M. & Gull, K. A pol I transcriptional body associated with VSG mono-allelic expression in _Trypanosoma brucei_. _Nature_ 414, 759–763 (2001). CAS
PubMed Google Scholar * Markenscoff-Papadimitriou, E. et al. Enhancer interaction networks as a means for singular olfactory receptor expression. _Cell_ 159, 543–557 (2014). CAS PubMed
PubMed Central Google Scholar * Chess, A. Monoallelic gene expression in mammals. _Annu. Rev. Genet._ 50, 317–327 (2016). CAS PubMed Google Scholar * Hozumi, N. & Tonegawa, S.
Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. _Proc. Natl Acad. Sci. USA_ 73, 3628–3632 (1976). CAS PubMed PubMed Central Google
Scholar * Raulet, D. H., Garman, R. D., Saito, H. & Tonegawa, S. Developmental regulation of T-cell receptor gene expression. _Nature_ 314, 103–107 (1985). CAS PubMed Google Scholar
* Landeira, D. & Navarro, M. Nuclear repositioning of the VSG promoter during developmental silencing in _Trypanosoma brucei_. _J. Cell Biol._ 176, 133–139 (2007). CAS PubMed PubMed
Central Google Scholar * DuBois, K. N. et al. NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. _PLoS Biol._ 10, e1001287 (2012). CAS PubMed
PubMed Central Google Scholar * Chaves, I. et al. Subnuclear localization of the active variant surface glycoprotein gene expression site in _Trypanosoma brucei_. _Proc. Natl Acad. Sci.
USA_ 95, 12328–12333 (1998). CAS PubMed PubMed Central Google Scholar * Budzak, J. et al. Dynamic colocalization of 2 simultaneously active VSG expression sites within a single
expression-site body in _Trypanosoma brucei_. _Proc. Natl Acad. Sci. USA_ 116, 16561–16570 (2019). CAS PubMed PubMed Central Google Scholar * Maishman, L. et al. Co-dependence between
trypanosome nuclear lamina components in nuclear stability and control of gene expression. _Nucleic Acids Res._ 44, 10554–10570 (2016). CAS PubMed PubMed Central Google Scholar * Müller,
L. S. M. et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. _Nature_ 563, 121–125 (2018). PubMed PubMed Central Google Scholar * Glover, L.,
Hutchinson, S., Alsford, S. & Horn, D. VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. _Proc. Natl Acad. Sci. USA_ 113, 7225–7230 (2016). CAS
PubMed PubMed Central Google Scholar * Faria, J. et al. Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African
trypanosomes. _Nat. Microbiol._ 6, 289–300 (2021). CAS PubMed PubMed Central Google Scholar * Faria, J. et al. Monoallelic expression and epigenetic inheritance sustained by a
_Trypanosoma brucei_ variant surface glycoprotein exclusion complex. _Nat. Commun._ 10, 3023 (2019). PubMed PubMed Central Google Scholar * López-Escobar, L. et al. Stage-specific
transcription activator ESB1 regulates monoallelic antigen expression in _Trypanosoma brucei_. _Nat. Microbiol._ 7, 1280–1290 (2022). PubMed PubMed Central Google Scholar * Lopez-Farfan,
D., Bart, J. M., Rojas-Barros, D. I. & Navarro, M. SUMOylation by the E3 Ligase TbSIZ1/PIAS1 positively regulates VSG expression in _Trypanosoma brucei_. _PLoS Pathog._ 10, e1004545
(2014). PubMed PubMed Central Google Scholar * Budzak, J., Jones, R., Tschudi, C., Kolev, N. G. & Rudenko, G. An assembly of nuclear bodies associates with the active VSG expression
site in African trypanosomes. _Nat. Commun._ 13, 101 (2022). CAS PubMed PubMed Central Google Scholar * Perry, K. L., Watkins, K. P. & Agabian, N. Trypanosome mRNAs have unusual “cap
4” structures acquired by addition of a spliced leader. _Proc. Natl Acad. Sci. USA_ 84, 8190–8194 (1987). CAS PubMed PubMed Central Google Scholar * Nelson, R. G. et al. Sequences
homologous to the variant antigen mRNA spliced leader are located in tandem repeats and variable orphons in _Trypanosoma brucei_. _Cell_ 34, 901–909 (1983). CAS PubMed Google Scholar *
Ralph, S. A., Scheidig-Benatar, C. & Scherf, A. Antigenic variation in _Plasmodium falciparum_ is associated with movement of var loci between subnuclear locations. _Proc. Natl Acad.
Sci. USA_ 102, 5414–5419 (2005). CAS PubMed PubMed Central Google Scholar * Lopez-Rubio, J. J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates
clonally variant gene regulation with perinuclear repressive centers in malaria parasites. _Cell Host Microbe_ 5, 179–190 (2009). CAS PubMed Google Scholar * Freitas-Junior, L. H. et al.
Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. _Cell_ 121, 25–36 (2005). CAS PubMed
Google Scholar * Chookajorn, T. et al. Epigenetic memory at malaria virulence genes. _Proc. Natl Acad. Sci. USA_ 104, 899–902 (2007). CAS PubMed PubMed Central Google Scholar * Zhang,
Q. et al. A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. _Cell Host Microbe_ 10, 451–463
(2011). CAS PubMed PubMed Central Google Scholar * Wei, G., Zhao, Y., Zhang, Q. & Pan, W. Dual regulatory effects of non-coding GC-rich elements on the expression of virulence genes
in malaria parasites. _Infect. Genet. Evol._ 36, 490–499 (2015). CAS PubMed Google Scholar * Guizetti, J., Barcons-Simon, A. & Scherf, A. Trans-acting GC-rich non-coding RNA at var
expression site modulates gene counting in malaria parasite. _Nucleic Acids Res._ 44, 9710–9718 (2016). CAS PubMed PubMed Central Google Scholar * Barcons-Simon, A., Cordon-Obras, C.,
Guizetti, J., Bryant, J. M. & Scherf, A. CRISPR interference of a clonally variant GC-rich noncoding RNA family leads to general repression of var genes in _Plasmodium falciparum_.
_mBio_ 11, e03054–19 (2020). CAS PubMed PubMed Central Google Scholar * Diffendall, G. M. et al. Discovery of RUF6 ncRNA-interacting proteins involved in _P. falciparum_ immune evasion.
_Life Sci. Alliance_ 6, e202201577 (2023). CAS PubMed Google Scholar * Ruiz, J. L. et al. Characterization of the accessible genome in the human malaria parasite _Plasmodium falciparum_.
_Nucleic Acids Res._ 46, 9414–9431 (2018). CAS PubMed PubMed Central Google Scholar * Canella, D., Praz, V., Reina, J. H., Cousin, P. & Hernandez, N. Defining the RNA polymerase III
transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. _Genome Res._ 20, 710–721 (2010). CAS PubMed PubMed Central Google Scholar *
Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. _Cell_ 125, 859–872 (2006). CAS PubMed Google Scholar *
Raab, J. R. et al. Human tRNA genes function as chromatin insulators. _EMBO J._ 31, 330–350 (2012). CAS PubMed Google Scholar * Kirkland, J. G., Raab, J. R. & Kamakaka, R. T. TFIIIC
bound DNA elements in nuclear organization and insulation. _Biochim. Biophys. Acta_ 1829, 418–424 (2013). CAS PubMed Google Scholar * Broadbent, K. M. et al. A global transcriptional
analysis of _Plasmodium falciparum_ malaria reveals a novel family of telomere-associated lncRNAs. _Genome Biol._ 12, R56 (2011). CAS PubMed PubMed Central Google Scholar *
Sierra-Miranda, M. et al. Two long non-coding RNAs generated from subtelomeric regions accumulate in a novel perinuclear compartment in _Plasmodium falciparum_. _Mol. Biochem. Parasitol._
185, 36–47 (2012). CAS PubMed PubMed Central Google Scholar * Voss, T. S. et al. A var gene promoter controls allelic exclusion of virulence genes in _Plasmodium falciparum_ malaria.
_Nature_ 439, 1004–1008 (2006). CAS PubMed Google Scholar * Brolin, K. J. et al. Simultaneous transcription of duplicated var2csa gene copies in individual _Plasmodium falciparum_
parasites. _Genome Biol._ 10, R117 (2009). PubMed PubMed Central Google Scholar * Chaves, I., Rudenko, G., Dirks-Mulder, A., Cross, M. & Borst, P. Control of variant surface
glycoprotein gene-expression sites in _Trypanosoma brucei_. _EMBO J._ 18, 4846–4855 (1999). CAS PubMed PubMed Central Google Scholar * Howitt, C. A. et al. Clonally variant gene families
in _Plasmodium falciparum_ share a common activation factor. _Mol. Microbiol._ 73, 1171–1185 (2009). CAS PubMed PubMed Central Google Scholar * Lemieux, J. E. et al. Genome-wide
profiling of chromosome interactions in _Plasmodium falciparum_ characterizes nuclear architecture and reconfigurations associated with antigenic variation. _Mol. Microbiol._ 90, 519–537
(2013). CAS PubMed PubMed Central Google Scholar * Ay, F. et al. Three-dimensional modeling of the _P. falciparum_ genome during the erythrocytic cycle reveals a strong connection
between genome architecture and gene expression. _Genome Res._ 24, 974–988 (2014). CAS PubMed PubMed Central Google Scholar * Bunnik, E. M. Comparative 3D genome organization in
apicomplexan parasites. _Proc. Natl Acad. Sci USA_ https://doi.org/10.1073/pnas.1810815116 (2019). * Duan, Z. et al. A three-dimensional model of the yeast genome. _Nature_ 465, 363–367
(2010). CAS PubMed PubMed Central Google Scholar * Lu, B. et al. The architectural factor HMGB1 is involved in genome organization in the human malaria parasite _Plasmodium falciparum_.
_mBio_ 12, e00148–21 (2021). CAS PubMed PubMed Central Google Scholar * Mitrentsi, I., Yilmaz, D. & Soutoglou, E. How to maintain the genome in nuclear space. _Curr. Opin. Cell
Biol._ 64, 58–66 (2020). CAS PubMed Google Scholar * Hall, J. P., Wang, H. & Barry, J. D. Mosaic VSGs and the scale of _Trypanosoma brucei_ antigenic variation. _PLoS Pathog._ 9,
e1003502 (2013). CAS PubMed PubMed Central Google Scholar * Boothroyd, C. E. et al. A yeast-endonuclease-generated DNA break induces antigenic switching in _Trypanosoma brucei_. _Nature_
459, 278–281 (2009). CAS PubMed PubMed Central Google Scholar * Glover, L., Alsford, S. & Horn, D. DNA break site at fragile subtelomeres determines probability and mechanism of
antigenic variation in african trypanosomes. _PLoS Pathog._ 9, e1003260 (2013). CAS PubMed PubMed Central Google Scholar * Glover, L. et al. Antigenic variation in African trypanosomes:
the importance of chromosomal and nuclear context in VSG expression control. _Cell. Microbiol._ 15, 1984–1993 (2013). CAS PubMed PubMed Central Google Scholar * Hovel-Miner, G., Mugnier,
M. R., Goldwater, B., Cross, G. A. & Papavasiliou, F. N. A conserved DNA repeat promotes selection of a diverse repertoire of _Trypanosoma brucei_ surface antigens from the genomic
archive. _PLoS Genet._ 12, e1005994 (2016). PubMed PubMed Central Google Scholar * Dreesen, O. & Cross, G. A. Telomere length in _Trypanosoma brucei_. _Exp. Parasitol._ 118, 103–110
(2008). CAS PubMed Google Scholar * Dreesen, O., Li, B. & Cross, G. A. Telomere structure and function in trypanosomes: a proposal. _Nat. Rev. Microbiol._ 5, 70–75 (2007). CAS PubMed
Google Scholar * da Silva, M. S., Hovel-Miner, G. A., Briggs, E. M., Elias, M. C. & McCulloch, R. Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation
in African trypanosomes. _PLoS Pathog._ 14, e1007321 (2018). PubMed PubMed Central Google Scholar * Briggs, E. et al. _Trypanosoma brucei_ ribonuclease H2A is an essential R-loop
processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. _Nucleic Acids Res._ 47, 9180–9197 (2019). CAS PubMed PubMed Central Google Scholar
* Sudarshi, D. et al. Human African trypanosomiasis presenting at least 29 years after infection—what can this teach us about the pathogenesis and control of this neglected tropical
disease. _PLoS Negl. Trop. Dis._ 8, e3349 (2014). PubMed PubMed Central Google Scholar * Welburn, S., Picozzi, K., Coleman, P. G. & Packer, C. Patterns in age-seroprevalence
consistent with acquired immunity against _Trypanosoma brucei_ in Serengeti lions. _PLoS Negl. Trop. Dis._ 2, e347 (2008). PubMed PubMed Central Google Scholar * Turner, C. M. The rate of
antigenic variation in fly-transmitted and syringe-passaged infections of _Trypanosoma brucei_. _FEMS Microbiol. Lett._ 153, 227–231 (1997). CAS PubMed Google Scholar * Berriman, M. et
al. The genome of the African trypanosome _Trypanosoma brucei_. _Science_ 309, 416–422 (2005). CAS PubMed Google Scholar * Bachmann, A. et al. Highly co-ordinated var gene expression and
switching in clinical _Plasmodium falciparum_ isolates from non-immune malaria patients. _Cell. Microbiol._ 13, 1397–1409 (2011). CAS PubMed Google Scholar * Otto, T. D. et al. Genomes of
all known members of a _Plasmodium_ subgenus reveal paths to virulent human malaria. _Nat. Microbiol._ 3, 687–697 (2018). CAS PubMed PubMed Central Google Scholar * Gross, M. R., Hsu,
R. & Deitsch, K. W. Evolution of transcriptional control of antigenic variation and virulence in human and ape malaria parasites. _BMC Ecol. Evol._ 21, 139 (2021). CAS PubMed PubMed
Central Google Scholar * Mok, B. W. et al. Default pathway of var2csa switching and translational repression in _Plasmodium falciparum_. _PLoS ONE_ 3, e1982 (2008). PubMed PubMed Central
Google Scholar * Ukaegbu, U. E. et al. A unique virulence gene occupies a principal position in immune evasion by the malaria parasite _Plasmodium falciparum_. _PLoS Genet._ 11, e1005234
(2015). PubMed PubMed Central Google Scholar * Zhang, X. et al. A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites. _eLife_ 11, e83840
(2022). PubMed PubMed Central Google Scholar * Bopp, S. E. et al. Mitotic evolution of _Plasmodium falciparum_ shows a stable core genome but recombination in antigen families. _PLoS
Genet._ 9, e1003293 (2013). CAS PubMed PubMed Central Google Scholar * Claessens, A. et al. Generation of antigenic diversity in _Plasmodium falciparum_ by structured rearrangement of
Var genes during mitosis. _PLoS Genet._ 10, e1004812 (2014). PubMed PubMed Central Google Scholar * Calhoun, S. F. et al. Chromosome end repair and genome stability in _Plasmodium
falciparum_. _mBio_ 8, e00547–17 (2017). PubMed PubMed Central Google Scholar * Zhang, X. et al. Rapid antigen diversification through mitotic recombination in the human malaria parasite
_Plasmodium falciparum_. _PLoS Biol._ 17, e3000271 (2019). CAS PubMed PubMed Central Google Scholar * Hanchate, N. K. et al. Single-cell transcriptomics reveals receptor transformations
during olfactory neurogenesis. _Science_ 350, 1251–1255 (2015). CAS PubMed PubMed Central Google Scholar * Farouni, R., Djambazian, H., Ferri, L. E., Ragoussis, J. & Najafabadi, H.
S. Model-based analysis of sample index hopping reveals its widespread artifacts in multiplexed single-cell RNA-sequencing. _Nat. Commun._ 11, 2704 (2020). CAS PubMed PubMed Central
Google Scholar * Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. _Genome Biol._ 21, 57 (2020). PubMed PubMed Central Google Scholar * Wang, X. et al.
Characterization of the unusual bidirectional ves promoters driving VESA1 expression and associated with antigenic variation in _Babesia bovis_. _Eukaryot. Cell_ 11, 260–269 (2012). CAS
PubMed PubMed Central Google Scholar * Figueiredo, L. M. & Cross, G. A. Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes.
_Eukaryot. Cell_ 9, 148–154 (2010). CAS PubMed Google Scholar * Stanne, T. M. & Rudenko, G. Active VSG expression sites in _Trypanosoma brucei_ are depleted of nucleosomes. _Eukaryot.
Cell_ 9, 136–147 (2010). CAS PubMed Google Scholar * McCulloch, R. & Barry, J. D. A role for RAD51 and homologous recombination in _Trypanosoma brucei_ antigenic variation. _Genes
Dev._ 13, 2875–2888 (1999). CAS PubMed PubMed Central Google Scholar * Viegas, I. J. et al. N6-Methyladenosine in poly(A) tails stabilize VSG transcripts. _Nature_ 604, 362–370 (2022).
CAS PubMed PubMed Central Google Scholar * Toenhake, C. G. et al. Chromatin accessibility-based characterization of the gene regulatory network underlying _Plasmodium falciparum_
blood-stage development. _Cell Host Microbe_ 23, 557–569.e9 (2018). CAS PubMed PubMed Central Google Scholar * Bartfai, R. et al. H2A.Z demarcates intergenic regions of the _Plasmodium
falciparum_ epigenome that are dynamically marked by H3K9ac and H3K4me3. _PLoS Pathog._ 6, e1001223 (2010). CAS PubMed PubMed Central Google Scholar * Petter, M. et al. H2A.Z and H2B.Z
double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite _Plasmodium falciparum_. _Mol. Microbiol._ 87, 1167–1182 (2013). CAS
PubMed Google Scholar * Petter, M. et al. Expression of _P. falciparum_ var genes involves exchange of the histone variant H2A.Z at the promoter. _PLoS Pathog._ 7, e1001292 (2011). CAS
PubMed PubMed Central Google Scholar * Fraschka, S. A., Henderson, R. W. & Bártfai, R. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for
virulence gene expression in _Plasmodium falciparum_. _Sci. Rep._ 6, 31965 (2016). CAS PubMed PubMed Central Google Scholar * Bryant, J. M. et al. Exploring the virulence gene
interactome with CRISPR/dCas9 in the human malaria parasite. _Mol. Syst. Biol._ 16, e9569 (2020). CAS PubMed PubMed Central Google Scholar * Huang, Y., Xiao, Y. P. & Allred, D. R.
Unusual chromatin structure associated with monoparalogous transcription of the _Babesia bovis_ ves multigene family. _Int. J. Parasitol._ 43, 163–172 (2013). CAS PubMed Google Scholar *
Mack, E. A., Tagliamonte, M. S., Xiao, Y. P., Quesada, S. & Allred, D. R. _Babesia bovis_ Rad51 ortholog influences switching of ves genes but is not essential for segmental gene
conversion in antigenic variation. _PLoS Pathog._ 16, e1008772 (2020). CAS PubMed PubMed Central Google Scholar * Prucca, C. G. et al. Antigenic variation in _Giardia lamblia_ is
regulated by RNA interference. _Nature_ 456, 750–754 (2008). CAS PubMed Google Scholar * Saraiya, A. A., Li, W., Wu, J., Chang, C. H. & Wang, C. C. The microRNAs in an ancient protist
repress the variant-specific surface protein expression by targeting the entire coding sequence. _PLoS Pathog._ 10, e1003791 (2014). PubMed PubMed Central Google Scholar * Gargantini, P.
R., Serradell, M. D. C., Ríos, D. N., Tenaglia, A. H. & Luján, H. D. Antigenic variation in the intestinal parasite _Giardia lamblia_. _Curr. Opin. Microbiol._ 32, 52–58 (2016). CAS
PubMed Google Scholar * van Leeuwen, F. et al. Localization of the modified base J in telomeric VSG gene expression sites of _Trypanosoma brucei_. _Genes Dev._ 11, 3232–3241 (1997). PubMed
PubMed Central Google Scholar * Schulz, D., Zaringhalam, M., Papavasiliou, F. N. & Kim, H. S. Base J and H3.V regulate transcriptional termination in _Trypanosoma brucei_. _PLoS
Genet._ 12, e1005762 (2016). PubMed PubMed Central Google Scholar * Reynolds, D. et al. Histone H3 variant regulates RNA polymerase II transcription termination and dual strand
transcription of siRNA loci in _Trypanosoma brucei_. _PLoS Genet._ 12, e1005758 (2016). PubMed PubMed Central Google Scholar * Hughes, K. et al. A novel ISWI is involved in VSG expression
site downregulation in African trypanosomes. _EMBO J._ 26, 2400–2410 (2007). CAS PubMed PubMed Central Google Scholar * Figueiredo, L. M., Janzen, C. J. & Cross, G. A. M. A histone
methyltransferase modulates antigenic variation in African trypanosomes. _PLoS Biol._ 6, e161 (2008). PubMed PubMed Central Google Scholar * Denninger, V. & Rudenko, G. FACT plays a
major role in histone dynamics affecting VSG expression site control in _Trypanosoma brucei_. _Mol. Microbiol._ 94, 945–962 (2014). CAS PubMed PubMed Central Google Scholar * Jiang, L.
et al. PfSETvs methylation of histone H3K36 represses virulence genes in _Plasmodium falciparum_. _Nature_ 499, 223–227 (2013). CAS PubMed PubMed Central Google Scholar * Chess, A.,
Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. _Cell_ 78, 823–834 (1994). CAS PubMed Google Scholar * Wang, F., Nemes, A.,
Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. _Cell_ 93, 47–60 (1998). CAS PubMed Google Scholar * Clowney, E. J. et al. Nuclear
aggregation of olfactory receptor genes governs their monogenic expression. _Cell_ 151, 724–737 (2012). CAS PubMed PubMed Central Google Scholar * Armelin-Correa, L. M., Gutiyama, L. M.,
Brandt, D. Y. & Malnic, B. Nuclear compartmentalization of odorant receptor genes. _Proc. Natl Acad. Sci. USA_ 111, 2782–2787 (2014). CAS PubMed PubMed Central Google Scholar *
Bashkirova, E. & Lomvardas, S. Olfactory receptor genes make the case for inter-chromosomal interactions. _Curr. Opin. Genet. Dev._ 55, 106–113 (2019). CAS PubMed PubMed Central
Google Scholar Download references ACKNOWLEDGEMENTS We thank all members of the Siegel lab for valuable discussion and ScI-llustrations Carolin Wedel Grafikdesign for help with the figure
design. A.B.-S. is funded through the CRC 1064 (213249687), an ERC Starting Grant (3D_Tryps 715466), and an ERC Consolidator Grant (SwitchDecoding 101044320) awarded to T.N.S. M.C. is a
Wellcome Investigator (217138/Z/19/Z). Work on this Review has been supported by funds from the University of Cambridge and LMU München strategic partnership scheme. AUTHOR INFORMATION
AUTHORS AND AFFILIATIONS * Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany Anna Barcons-Simon & T. Nicolai
Siegel * Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany Anna Barcons-Simon & T. Nicolai Siegel *
Department of Biochemistry, University of Cambridge, Cambridge, UK Mark Carrington Authors * Anna Barcons-Simon View author publications You can also search for this author inPubMed Google
Scholar * Mark Carrington View author publications You can also search for this author inPubMed Google Scholar * T. Nicolai Siegel View author publications You can also search for this
author inPubMed Google Scholar CONTRIBUTIONS A.B.-S. and T.N.S conceived the main ideas for the Review. A.B.-S. wrote the original draft. A.B.-S., M.C. and T.N.S. reviewed and edited the
paper. T.N.S. prepared the figures. CORRESPONDING AUTHOR Correspondence to T. Nicolai Siegel. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW
PEER REVIEW INFORMATION _Nature Microbiology_ thanks Mohamed-Ali Hakimi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION
PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor
(e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE
Barcons-Simon, A., Carrington, M. & Siegel, T.N. Decoding the impact of nuclear organization on antigenic variation in parasites. _Nat Microbiol_ 8, 1408–1418 (2023).
https://doi.org/10.1038/s41564-023-01424-9 Download citation * Received: 22 December 2022 * Accepted: 13 June 2023 * Published: 31 July 2023 * Issue Date: August 2023 * DOI:
https://doi.org/10.1038/s41564-023-01424-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative