Decoding the impact of nuclear organization on antigenic variation in parasites

Decoding the impact of nuclear organization on antigenic variation in parasites

Play all audios:

Loading...

ABSTRACT Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually


exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of


the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the


impact of nuclear organization on antigenic variation in the protozoan pathogens _Trypanosoma brucei_ and _Plasmodium falciparum_. In particular, we highlight the relevance of nuclear


organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS STAGE-SPECIFIC TRANSCRIPTION ACTIVATOR


ESB1 REGULATES MONOALLELIC ANTIGEN EXPRESSION IN _TRYPANOSOMA BRUCEI_ Article Open access 25 July 2022 SPATIAL INTEGRATION OF TRANSCRIPTION AND SPLICING IN A DEDICATED COMPARTMENT SUSTAINS


MONOGENIC ANTIGEN EXPRESSION IN AFRICAN TRYPANOSOMES Article 11 January 2021 GENOMIC DETERMINANTS OF ANTIGEN EXPRESSION HIERARCHY IN AFRICAN TRYPANOSOMES Article Open access 12 March 2025


REFERENCES * Janeway, C., Travers, P., Walport, M. & Schlomchik, M. _Immunobiology_ 5th edn (Elsevier España, 2001). * Gupta, S., Ferguson, N. & Anderson, R. Chaos, persistence, and


evolution of strain structure in antigenically diverse infectious agents. _Science_ 280, 912–915 (1998). CAS  PubMed  Google Scholar  * Deitsch, K. W., Lukehart, S. A. & Stringer, J. R.


Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. _Nat. Rev. Microbiol._ 7, 493–503 (2009). CAS  PubMed  PubMed Central  Google Scholar  *


Wisniewski-Dyé, F. & Vial, L. Phase and antigenic variation mediated by genome modifications. _Antonie Van Leeuwenhoek_ 94, 493–515 (2008). PubMed  Google Scholar  * Petrova, V. N. &


Russell, C. A. The evolution of seasonal influenza viruses. _Nat. Rev. Microbiol._ 16, 47–60 (2018). CAS  PubMed  Google Scholar  * Prucca, C. G., Rivero, F. D. & Lujan, H. D.


Regulation of antigenic variation in _Giardia lamblia_. _Annu. Rev. Microbiol._ 65, 611–630 (2011). CAS  PubMed  Google Scholar  * Al-Khedery, B. & Allred, D. R. Antigenic variation in


_Babesia bovis_ occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. _Mol. Microbiol._ 59, 402–414 (2006). CAS  PubMed


  Google Scholar  * Schwede, A., Jones, N., Engstler, M. & Carrington, M. The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. _Mol. Biochem. Parasitol._ 175,


201–204 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Mugnier, M. R., Cross, G. A. & Papavasiliou, F. N. The in vivo dynamics of antigenic variation in _Trypanosoma brucei_.


_Science_ 347, 1470–1473 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Ramey-Butler, K., Ullu, E., Kolev, N. G. & Tschudi, C. Synchronous expression of individual metacyclic


variant surface glycoprotein genes in _Trypanosoma brucei_. _Mol. Biochem. Parasitol._ 200, 1–4 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Barry, J. D. et al. VSG gene control


and infectivity strategy of metacyclic stage _Trypanosoma brucei_. _Mol. Biochem. Parasitol._ 91, 93–105 (1998). CAS  PubMed  Google Scholar  * Hutchinson, S. et al. The establishment of


variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of _Trypanosoma brucei_ in the tsetse fly salivary glands. _PLoS Pathog._ 17, e1009904 (2021). CAS  PubMed


  PubMed Central  Google Scholar  * Scherf, A., Lopez-Rubio, J. J. & Riviere, L. Antigenic variation in _Plasmodium falciparum_. _Annu. Rev. Microbiol._ 62, 445–470 (2008). CAS  PubMed 


Google Scholar  * Kyes, S. A., Rowe, J. A., Kriek, N. & Newbold, C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with


_Plasmodium falciparum_. _Proc. Natl Acad. Sci. USA_ 96, 9333–9338 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Niang, M., Yan Yam, X. & Preiser, P. R. The _Plasmodium


falciparum_ STEVOR multigene family mediates antigenic variation of the infected erythrocyte. _PLoS Pathog._ 5, e1000307 (2009). PubMed  PubMed Central  Google Scholar  * Miller, L. H.,


Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. _Nature_ 415, 673–679 (2002). CAS  PubMed  Google Scholar  * Real, E., Nardella, F., Scherf, A. &


Mancio-Silva, L. Repurposing of _Plasmodium falciparum_ var genes beyond the blood stage. _Curr. Opin. Microbiol._ 70, 102207 (2022). CAS  PubMed  Google Scholar  * Jerkovic, I. &


Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. _Nat. Rev. Mol. Cell Biol._ 22, 511–528 (2021). CAS  PubMed  Google Scholar  * Cosentino, R. O., Brink, B. G.


& Siegel, T. N. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. _NAR Genom. Bioinform._ 3, lqab082


(2021). PubMed  PubMed Central  Google Scholar  * Wickstead, B., Ersfeld, K. & Gull, K. The small chromosomes of _Trypanosoma brucei_ involved in antigenic variation are constructed


around repetitive palindromes. _Genome Res._ 14, 1014–1024 (2004). CAS  PubMed  PubMed Central  Google Scholar  * Lopez-Rubio, J. J. et al. 5′ flanking region of var genes nucleate histone


modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. _Mol. Microbiol._ 66, 1296–1305 (2007). CAS  PubMed  PubMed Central  Google Scholar  *


Perez-Toledo, K. et al. _Plasmodium falciparum_ heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. _Nucleic


Acids Res._ 37, 2596–2606 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Gardner, M. J. et al. Genome sequence of the human malaria parasite _Plasmodium falciparum_. _Nature_ 419,


498–511 (2002). CAS  PubMed  Google Scholar  * Figueiredo, L. M., Freitas-Junior, L. H., Bottius, E., Olivo-Marin, J. C. & Scherf, A. A central role for _Plasmodium falciparum_


subtelomeric regions in spatial positioning and telomere length regulation. _EMBO J._ 21, 815–824 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Otto, T. D. et al. Long read


assemblies of geographically dispersed _Plasmodium falciparum_ isolates reveal highly structured subtelomeres. _Wellcome Open Res._ 3, 52 (2018). PubMed  PubMed Central  Google Scholar  *


Freitas-Junior, L. H. et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of _P. falciparum_. _Nature_ 407, 1018–1022 (2000). CAS  PubMed  Google


Scholar  * Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of _Plasmodium falciparum_-infected erythrocytes. _Cell_ 82,


89–100 (1995). CAS  PubMed  Google Scholar  * Kraemer, S. M. et al. Patterns of gene recombination shape var gene repertoires in _Plasmodium falciparum_: comparisons of geographically


diverse isolates. _BMC Genom._ 8, 45 (2007). Google Scholar  * Kyes, S. et al. _Plasmodium falciparum_ var gene expression is developmentally controlled at the level of RNA polymerase


II-mediated transcription initiation. _Mol. Microbiol._ 63, 1237–1247 (2007). CAS  PubMed  Google Scholar  * Schieck, E., Pfahler, J. M., Sanchez, C. P. & Lanzer, M. Nuclear run-on


analysis of var gene expression in _Plasmodium falciparum_. _Mol. Biochem. Parasitol._ 153, 207–212 (2007). CAS  PubMed  Google Scholar  * Calderwood, M. S., Gannoun-Zaki, L., Wellems, T. E.


& Deitsch, K. W. _Plasmodium falciparum var_ genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. _J. Biol.


Chem._ 278, 34125–34132 (2003). CAS  PubMed  Google Scholar  * Epp, C., Li, F., Howitt, C. A., Chookajorn, T. & Deitsch, K. W. Chromatin associated sense and antisense noncoding RNAs are


transcribed from the var gene family of virulence genes of the malaria parasite _Plasmodium falciparum_. _RNA_ 15, 116–127 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Siegel, T.


N. et al. Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in _Plasmodium falciparum_. _BMC Genom._ 15, 150 (2014).


Google Scholar  * Duraisingh, M. T. et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in _Plasmodium falciparum_. _Cell_ 121, 13–24 (2005). CAS


  PubMed  Google Scholar  * Navarro, M. & Gull, K. A pol I transcriptional body associated with VSG mono-allelic expression in _Trypanosoma brucei_. _Nature_ 414, 759–763 (2001). CAS 


PubMed  Google Scholar  * Markenscoff-Papadimitriou, E. et al. Enhancer interaction networks as a means for singular olfactory receptor expression. _Cell_ 159, 543–557 (2014). CAS  PubMed 


PubMed Central  Google Scholar  * Chess, A. Monoallelic gene expression in mammals. _Annu. Rev. Genet._ 50, 317–327 (2016). CAS  PubMed  Google Scholar  * Hozumi, N. & Tonegawa, S.


Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. _Proc. Natl Acad. Sci. USA_ 73, 3628–3632 (1976). CAS  PubMed  PubMed Central  Google


Scholar  * Raulet, D. H., Garman, R. D., Saito, H. & Tonegawa, S. Developmental regulation of T-cell receptor gene expression. _Nature_ 314, 103–107 (1985). CAS  PubMed  Google Scholar 


* Landeira, D. & Navarro, M. Nuclear repositioning of the VSG promoter during developmental silencing in _Trypanosoma brucei_. _J. Cell Biol._ 176, 133–139 (2007). CAS  PubMed  PubMed


Central  Google Scholar  * DuBois, K. N. et al. NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. _PLoS Biol._ 10, e1001287 (2012). CAS  PubMed 


PubMed Central  Google Scholar  * Chaves, I. et al. Subnuclear localization of the active variant surface glycoprotein gene expression site in _Trypanosoma brucei_. _Proc. Natl Acad. Sci.


USA_ 95, 12328–12333 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Budzak, J. et al. Dynamic colocalization of 2 simultaneously active VSG expression sites within a single


expression-site body in _Trypanosoma brucei_. _Proc. Natl Acad. Sci. USA_ 116, 16561–16570 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Maishman, L. et al. Co-dependence between


trypanosome nuclear lamina components in nuclear stability and control of gene expression. _Nucleic Acids Res._ 44, 10554–10570 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Müller,


L. S. M. et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. _Nature_ 563, 121–125 (2018). PubMed  PubMed Central  Google Scholar  * Glover, L.,


Hutchinson, S., Alsford, S. & Horn, D. VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. _Proc. Natl Acad. Sci. USA_ 113, 7225–7230 (2016). CAS 


PubMed  PubMed Central  Google Scholar  * Faria, J. et al. Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African


trypanosomes. _Nat. Microbiol._ 6, 289–300 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Faria, J. et al. Monoallelic expression and epigenetic inheritance sustained by a


_Trypanosoma brucei_ variant surface glycoprotein exclusion complex. _Nat. Commun._ 10, 3023 (2019). PubMed  PubMed Central  Google Scholar  * López-Escobar, L. et al. Stage-specific


transcription activator ESB1 regulates monoallelic antigen expression in _Trypanosoma brucei_. _Nat. Microbiol._ 7, 1280–1290 (2022). PubMed  PubMed Central  Google Scholar  * Lopez-Farfan,


D., Bart, J. M., Rojas-Barros, D. I. & Navarro, M. SUMOylation by the E3 Ligase TbSIZ1/PIAS1 positively regulates VSG expression in _Trypanosoma brucei_. _PLoS Pathog._ 10, e1004545


(2014). PubMed  PubMed Central  Google Scholar  * Budzak, J., Jones, R., Tschudi, C., Kolev, N. G. & Rudenko, G. An assembly of nuclear bodies associates with the active VSG expression


site in African trypanosomes. _Nat. Commun._ 13, 101 (2022). CAS  PubMed  PubMed Central  Google Scholar  * Perry, K. L., Watkins, K. P. & Agabian, N. Trypanosome mRNAs have unusual “cap


4” structures acquired by addition of a spliced leader. _Proc. Natl Acad. Sci. USA_ 84, 8190–8194 (1987). CAS  PubMed  PubMed Central  Google Scholar  * Nelson, R. G. et al. Sequences


homologous to the variant antigen mRNA spliced leader are located in tandem repeats and variable orphons in _Trypanosoma brucei_. _Cell_ 34, 901–909 (1983). CAS  PubMed  Google Scholar  *


Ralph, S. A., Scheidig-Benatar, C. & Scherf, A. Antigenic variation in _Plasmodium falciparum_ is associated with movement of var loci between subnuclear locations. _Proc. Natl Acad.


Sci. USA_ 102, 5414–5419 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Lopez-Rubio, J. J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates


clonally variant gene regulation with perinuclear repressive centers in malaria parasites. _Cell Host Microbe_ 5, 179–190 (2009). CAS  PubMed  Google Scholar  * Freitas-Junior, L. H. et al.


Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. _Cell_ 121, 25–36 (2005). CAS  PubMed 


Google Scholar  * Chookajorn, T. et al. Epigenetic memory at malaria virulence genes. _Proc. Natl Acad. Sci. USA_ 104, 899–902 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Zhang,


Q. et al. A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. _Cell Host Microbe_ 10, 451–463


(2011). CAS  PubMed  PubMed Central  Google Scholar  * Wei, G., Zhao, Y., Zhang, Q. & Pan, W. Dual regulatory effects of non-coding GC-rich elements on the expression of virulence genes


in malaria parasites. _Infect. Genet. Evol._ 36, 490–499 (2015). CAS  PubMed  Google Scholar  * Guizetti, J., Barcons-Simon, A. & Scherf, A. Trans-acting GC-rich non-coding RNA at var


expression site modulates gene counting in malaria parasite. _Nucleic Acids Res._ 44, 9710–9718 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Barcons-Simon, A., Cordon-Obras, C.,


Guizetti, J., Bryant, J. M. & Scherf, A. CRISPR interference of a clonally variant GC-rich noncoding RNA family leads to general repression of var genes in _Plasmodium falciparum_.


_mBio_ 11, e03054–19 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Diffendall, G. M. et al. Discovery of RUF6 ncRNA-interacting proteins involved in _P. falciparum_ immune evasion.


_Life Sci. Alliance_ 6, e202201577 (2023). CAS  PubMed  Google Scholar  * Ruiz, J. L. et al. Characterization of the accessible genome in the human malaria parasite _Plasmodium falciparum_.


_Nucleic Acids Res._ 46, 9414–9431 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Canella, D., Praz, V., Reina, J. H., Cousin, P. & Hernandez, N. Defining the RNA polymerase III


transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. _Genome Res._ 20, 710–721 (2010). CAS  PubMed  PubMed Central  Google Scholar  *


Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. _Cell_ 125, 859–872 (2006). CAS  PubMed  Google Scholar  *


Raab, J. R. et al. Human tRNA genes function as chromatin insulators. _EMBO J._ 31, 330–350 (2012). CAS  PubMed  Google Scholar  * Kirkland, J. G., Raab, J. R. & Kamakaka, R. T. TFIIIC


bound DNA elements in nuclear organization and insulation. _Biochim. Biophys. Acta_ 1829, 418–424 (2013). CAS  PubMed  Google Scholar  * Broadbent, K. M. et al. A global transcriptional


analysis of _Plasmodium falciparum_ malaria reveals a novel family of telomere-associated lncRNAs. _Genome Biol._ 12, R56 (2011). CAS  PubMed  PubMed Central  Google Scholar  *


Sierra-Miranda, M. et al. Two long non-coding RNAs generated from subtelomeric regions accumulate in a novel perinuclear compartment in _Plasmodium falciparum_. _Mol. Biochem. Parasitol._


185, 36–47 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Voss, T. S. et al. A var gene promoter controls allelic exclusion of virulence genes in _Plasmodium falciparum_ malaria.


_Nature_ 439, 1004–1008 (2006). CAS  PubMed  Google Scholar  * Brolin, K. J. et al. Simultaneous transcription of duplicated var2csa gene copies in individual _Plasmodium falciparum_


parasites. _Genome Biol._ 10, R117 (2009). PubMed  PubMed Central  Google Scholar  * Chaves, I., Rudenko, G., Dirks-Mulder, A., Cross, M. & Borst, P. Control of variant surface


glycoprotein gene-expression sites in _Trypanosoma brucei_. _EMBO J._ 18, 4846–4855 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Howitt, C. A. et al. Clonally variant gene families


in _Plasmodium falciparum_ share a common activation factor. _Mol. Microbiol._ 73, 1171–1185 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Lemieux, J. E. et al. Genome-wide


profiling of chromosome interactions in _Plasmodium falciparum_ characterizes nuclear architecture and reconfigurations associated with antigenic variation. _Mol. Microbiol._ 90, 519–537


(2013). CAS  PubMed  PubMed Central  Google Scholar  * Ay, F. et al. Three-dimensional modeling of the _P. falciparum_ genome during the erythrocytic cycle reveals a strong connection


between genome architecture and gene expression. _Genome Res._ 24, 974–988 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Bunnik, E. M. Comparative 3D genome organization in


apicomplexan parasites. _Proc. Natl Acad. Sci USA_ https://doi.org/10.1073/pnas.1810815116 (2019). * Duan, Z. et al. A three-dimensional model of the yeast genome. _Nature_ 465, 363–367


(2010). CAS  PubMed  PubMed Central  Google Scholar  * Lu, B. et al. The architectural factor HMGB1 is involved in genome organization in the human malaria parasite _Plasmodium falciparum_.


_mBio_ 12, e00148–21 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Mitrentsi, I., Yilmaz, D. & Soutoglou, E. How to maintain the genome in nuclear space. _Curr. Opin. Cell


Biol._ 64, 58–66 (2020). CAS  PubMed  Google Scholar  * Hall, J. P., Wang, H. & Barry, J. D. Mosaic VSGs and the scale of _Trypanosoma brucei_ antigenic variation. _PLoS Pathog._ 9,


e1003502 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Boothroyd, C. E. et al. A yeast-endonuclease-generated DNA break induces antigenic switching in _Trypanosoma brucei_. _Nature_


459, 278–281 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Glover, L., Alsford, S. & Horn, D. DNA break site at fragile subtelomeres determines probability and mechanism of


antigenic variation in african trypanosomes. _PLoS Pathog._ 9, e1003260 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Glover, L. et al. Antigenic variation in African trypanosomes:


the importance of chromosomal and nuclear context in VSG expression control. _Cell. Microbiol._ 15, 1984–1993 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Hovel-Miner, G., Mugnier,


M. R., Goldwater, B., Cross, G. A. & Papavasiliou, F. N. A conserved DNA repeat promotes selection of a diverse repertoire of _Trypanosoma brucei_ surface antigens from the genomic


archive. _PLoS Genet._ 12, e1005994 (2016). PubMed  PubMed Central  Google Scholar  * Dreesen, O. & Cross, G. A. Telomere length in _Trypanosoma brucei_. _Exp. Parasitol._ 118, 103–110


(2008). CAS  PubMed  Google Scholar  * Dreesen, O., Li, B. & Cross, G. A. Telomere structure and function in trypanosomes: a proposal. _Nat. Rev. Microbiol._ 5, 70–75 (2007). CAS  PubMed


  Google Scholar  * da Silva, M. S., Hovel-Miner, G. A., Briggs, E. M., Elias, M. C. & McCulloch, R. Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation


in African trypanosomes. _PLoS Pathog._ 14, e1007321 (2018). PubMed  PubMed Central  Google Scholar  * Briggs, E. et al. _Trypanosoma brucei_ ribonuclease H2A is an essential R-loop


processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. _Nucleic Acids Res._ 47, 9180–9197 (2019). CAS  PubMed  PubMed Central  Google Scholar


  * Sudarshi, D. et al. Human African trypanosomiasis presenting at least 29 years after infection—what can this teach us about the pathogenesis and control of this neglected tropical


disease. _PLoS Negl. Trop. Dis._ 8, e3349 (2014). PubMed  PubMed Central  Google Scholar  * Welburn, S., Picozzi, K., Coleman, P. G. & Packer, C. Patterns in age-seroprevalence


consistent with acquired immunity against _Trypanosoma brucei_ in Serengeti lions. _PLoS Negl. Trop. Dis._ 2, e347 (2008). PubMed  PubMed Central  Google Scholar  * Turner, C. M. The rate of


antigenic variation in fly-transmitted and syringe-passaged infections of _Trypanosoma brucei_. _FEMS Microbiol. Lett._ 153, 227–231 (1997). CAS  PubMed  Google Scholar  * Berriman, M. et


al. The genome of the African trypanosome _Trypanosoma brucei_. _Science_ 309, 416–422 (2005). CAS  PubMed  Google Scholar  * Bachmann, A. et al. Highly co-ordinated var gene expression and


switching in clinical _Plasmodium falciparum_ isolates from non-immune malaria patients. _Cell. Microbiol._ 13, 1397–1409 (2011). CAS  PubMed  Google Scholar  * Otto, T. D. et al. Genomes of


all known members of a _Plasmodium_ subgenus reveal paths to virulent human malaria. _Nat. Microbiol._ 3, 687–697 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Gross, M. R., Hsu,


R. & Deitsch, K. W. Evolution of transcriptional control of antigenic variation and virulence in human and ape malaria parasites. _BMC Ecol. Evol._ 21, 139 (2021). CAS  PubMed  PubMed


Central  Google Scholar  * Mok, B. W. et al. Default pathway of var2csa switching and translational repression in _Plasmodium falciparum_. _PLoS ONE_ 3, e1982 (2008). PubMed  PubMed Central


  Google Scholar  * Ukaegbu, U. E. et al. A unique virulence gene occupies a principal position in immune evasion by the malaria parasite _Plasmodium falciparum_. _PLoS Genet._ 11, e1005234


(2015). PubMed  PubMed Central  Google Scholar  * Zhang, X. et al. A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites. _eLife_ 11, e83840


(2022). PubMed  PubMed Central  Google Scholar  * Bopp, S. E. et al. Mitotic evolution of _Plasmodium falciparum_ shows a stable core genome but recombination in antigen families. _PLoS


Genet._ 9, e1003293 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Claessens, A. et al. Generation of antigenic diversity in _Plasmodium falciparum_ by structured rearrangement of


Var genes during mitosis. _PLoS Genet._ 10, e1004812 (2014). PubMed  PubMed Central  Google Scholar  * Calhoun, S. F. et al. Chromosome end repair and genome stability in _Plasmodium


falciparum_. _mBio_ 8, e00547–17 (2017). PubMed  PubMed Central  Google Scholar  * Zhang, X. et al. Rapid antigen diversification through mitotic recombination in the human malaria parasite


_Plasmodium falciparum_. _PLoS Biol._ 17, e3000271 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Hanchate, N. K. et al. Single-cell transcriptomics reveals receptor transformations


during olfactory neurogenesis. _Science_ 350, 1251–1255 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Farouni, R., Djambazian, H., Ferri, L. E., Ragoussis, J. & Najafabadi, H.


S. Model-based analysis of sample index hopping reveals its widespread artifacts in multiplexed single-cell RNA-sequencing. _Nat. Commun._ 11, 2704 (2020). CAS  PubMed  PubMed Central 


Google Scholar  * Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. _Genome Biol._ 21, 57 (2020). PubMed  PubMed Central  Google Scholar  * Wang, X. et al.


Characterization of the unusual bidirectional ves promoters driving VESA1 expression and associated with antigenic variation in _Babesia bovis_. _Eukaryot. Cell_ 11, 260–269 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Figueiredo, L. M. & Cross, G. A. Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes.


_Eukaryot. Cell_ 9, 148–154 (2010). CAS  PubMed  Google Scholar  * Stanne, T. M. & Rudenko, G. Active VSG expression sites in _Trypanosoma brucei_ are depleted of nucleosomes. _Eukaryot.


Cell_ 9, 136–147 (2010). CAS  PubMed  Google Scholar  * McCulloch, R. & Barry, J. D. A role for RAD51 and homologous recombination in _Trypanosoma brucei_ antigenic variation. _Genes


Dev._ 13, 2875–2888 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Viegas, I. J. et al. N6-Methyladenosine in poly(A) tails stabilize VSG transcripts. _Nature_ 604, 362–370 (2022).


CAS  PubMed  PubMed Central  Google Scholar  * Toenhake, C. G. et al. Chromatin accessibility-based characterization of the gene regulatory network underlying _Plasmodium falciparum_


blood-stage development. _Cell Host Microbe_ 23, 557–569.e9 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Bartfai, R. et al. H2A.Z demarcates intergenic regions of the _Plasmodium


falciparum_ epigenome that are dynamically marked by H3K9ac and H3K4me3. _PLoS Pathog._ 6, e1001223 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Petter, M. et al. H2A.Z and H2B.Z


double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite _Plasmodium falciparum_. _Mol. Microbiol._ 87, 1167–1182 (2013). CAS 


PubMed  Google Scholar  * Petter, M. et al. Expression of _P. falciparum_ var genes involves exchange of the histone variant H2A.Z at the promoter. _PLoS Pathog._ 7, e1001292 (2011). CAS 


PubMed  PubMed Central  Google Scholar  * Fraschka, S. A., Henderson, R. W. & Bártfai, R. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for


virulence gene expression in _Plasmodium falciparum_. _Sci. Rep._ 6, 31965 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Bryant, J. M. et al. Exploring the virulence gene


interactome with CRISPR/dCas9 in the human malaria parasite. _Mol. Syst. Biol._ 16, e9569 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Huang, Y., Xiao, Y. P. & Allred, D. R.


Unusual chromatin structure associated with monoparalogous transcription of the _Babesia bovis_ ves multigene family. _Int. J. Parasitol._ 43, 163–172 (2013). CAS  PubMed  Google Scholar  *


Mack, E. A., Tagliamonte, M. S., Xiao, Y. P., Quesada, S. & Allred, D. R. _Babesia bovis_ Rad51 ortholog influences switching of ves genes but is not essential for segmental gene


conversion in antigenic variation. _PLoS Pathog._ 16, e1008772 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Prucca, C. G. et al. Antigenic variation in _Giardia lamblia_ is


regulated by RNA interference. _Nature_ 456, 750–754 (2008). CAS  PubMed  Google Scholar  * Saraiya, A. A., Li, W., Wu, J., Chang, C. H. & Wang, C. C. The microRNAs in an ancient protist


repress the variant-specific surface protein expression by targeting the entire coding sequence. _PLoS Pathog._ 10, e1003791 (2014). PubMed  PubMed Central  Google Scholar  * Gargantini, P.


R., Serradell, M. D. C., Ríos, D. N., Tenaglia, A. H. & Luján, H. D. Antigenic variation in the intestinal parasite _Giardia lamblia_. _Curr. Opin. Microbiol._ 32, 52–58 (2016). CAS 


PubMed  Google Scholar  * van Leeuwen, F. et al. Localization of the modified base J in telomeric VSG gene expression sites of _Trypanosoma brucei_. _Genes Dev._ 11, 3232–3241 (1997). PubMed


  PubMed Central  Google Scholar  * Schulz, D., Zaringhalam, M., Papavasiliou, F. N. & Kim, H. S. Base J and H3.V regulate transcriptional termination in _Trypanosoma brucei_. _PLoS


Genet._ 12, e1005762 (2016). PubMed  PubMed Central  Google Scholar  * Reynolds, D. et al. Histone H3 variant regulates RNA polymerase II transcription termination and dual strand


transcription of siRNA loci in _Trypanosoma brucei_. _PLoS Genet._ 12, e1005758 (2016). PubMed  PubMed Central  Google Scholar  * Hughes, K. et al. A novel ISWI is involved in VSG expression


site downregulation in African trypanosomes. _EMBO J._ 26, 2400–2410 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Figueiredo, L. M., Janzen, C. J. & Cross, G. A. M. A histone


methyltransferase modulates antigenic variation in African trypanosomes. _PLoS Biol._ 6, e161 (2008). PubMed  PubMed Central  Google Scholar  * Denninger, V. & Rudenko, G. FACT plays a


major role in histone dynamics affecting VSG expression site control in _Trypanosoma brucei_. _Mol. Microbiol._ 94, 945–962 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Jiang, L.


et al. PfSETvs methylation of histone H3K36 represses virulence genes in _Plasmodium falciparum_. _Nature_ 499, 223–227 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Chess, A.,


Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. _Cell_ 78, 823–834 (1994). CAS  PubMed  Google Scholar  * Wang, F., Nemes, A.,


Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. _Cell_ 93, 47–60 (1998). CAS  PubMed  Google Scholar  * Clowney, E. J. et al. Nuclear


aggregation of olfactory receptor genes governs their monogenic expression. _Cell_ 151, 724–737 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Armelin-Correa, L. M., Gutiyama, L. M.,


Brandt, D. Y. & Malnic, B. Nuclear compartmentalization of odorant receptor genes. _Proc. Natl Acad. Sci. USA_ 111, 2782–2787 (2014). CAS  PubMed  PubMed Central  Google Scholar  *


Bashkirova, E. & Lomvardas, S. Olfactory receptor genes make the case for inter-chromosomal interactions. _Curr. Opin. Genet. Dev._ 55, 106–113 (2019). CAS  PubMed  PubMed Central 


Google Scholar  Download references ACKNOWLEDGEMENTS We thank all members of the Siegel lab for valuable discussion and ScI-llustrations Carolin Wedel Grafikdesign for help with the figure


design. A.B.-S. is funded through the CRC 1064 (213249687), an ERC Starting Grant (3D_Tryps 715466), and an ERC Consolidator Grant (SwitchDecoding 101044320) awarded to T.N.S. M.C. is a


Wellcome Investigator (217138/Z/19/Z). Work on this Review has been supported by funds from the University of Cambridge and LMU München strategic partnership scheme. AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany Anna Barcons-Simon & T. Nicolai


Siegel * Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany Anna Barcons-Simon & T. Nicolai Siegel *


Department of Biochemistry, University of Cambridge, Cambridge, UK Mark Carrington Authors * Anna Barcons-Simon View author publications You can also search for this author inPubMed Google


Scholar * Mark Carrington View author publications You can also search for this author inPubMed Google Scholar * T. Nicolai Siegel View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS A.B.-S. and T.N.S conceived the main ideas for the Review. A.B.-S. wrote the original draft. A.B.-S., M.C. and T.N.S. reviewed and edited the


paper. T.N.S. prepared the figures. CORRESPONDING AUTHOR Correspondence to T. Nicolai Siegel. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW


PEER REVIEW INFORMATION _Nature Microbiology_ thanks Mohamed-Ali Hakimi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor


(e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted


manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Barcons-Simon, A., Carrington, M. & Siegel, T.N. Decoding the impact of nuclear organization on antigenic variation in parasites. _Nat Microbiol_ 8, 1408–1418 (2023).


https://doi.org/10.1038/s41564-023-01424-9 Download citation * Received: 22 December 2022 * Accepted: 13 June 2023 * Published: 31 July 2023 * Issue Date: August 2023 * DOI:


https://doi.org/10.1038/s41564-023-01424-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative