Multilayer stacks of polycyclic aromatic hydrocarbons

Multilayer stacks of polycyclic aromatic hydrocarbons

Play all audios:

Loading...

ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) show promise for applications in functional devices such as organic photovoltaics and field-effect transistors, but, although nanometre-sized


PAHs—often referred to as nanographenes—have been well investigated as single-layer molecules, their multilayer counterparts remain rather unexplored. Here we show the assembly of a C64


nanographene derivative (comprising a planar core decorated with four _meta_-terphenyl–imide moieties at its periphery) into multilayer stacks with smaller PAHs ranging from naphthalene to


ovalene and hexabenzocoronene. The functionalized C64 nanographene serves as a ditopic host that can accommodate a smaller PAH on either side of its planar core, in cavities delimited by its


bulky imide substituents. Bilayers and trilayers (that is, complexes with 1:1 and 1:2 host:guest ratios, respectively) were observed in solution, and dimers of these complexes as well as


multilayer compounds were isolated in the solid state. Quantum-chemical calculations indicate that dispersion forces are the main stabilizing factor for these complexes. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per


year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


PARALLEL-STACKED AROMATIC MOLECULES IN HYDROGEN-BONDED INORGANIC FRAMEWORKS Article Open access 10 December 2021 MOIRÉ TWO-DIMENSIONAL COVALENT ORGANIC FRAMEWORK SUPERLATTICES Article Open


access 20 February 2025 BANDGAP ENGINEERING OF TWO-DIMENSIONAL C3N BILAYERS Article 28 June 2021 DATA AVAILABILITY Crystallographic data for the structures in this Article have been


deposited at the Cambridge Crystallographic Data Centre under deposition nos. CCDC 2068629 (monolayer, 1), 2068630 (multilayer, [COR·1·COR]_n_), 2068631 (hexalayer, [COR·1·COR]2) and 2068632


(tetralayer, [COR·1·1·COR]). Copies of data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. Details of the synthesis and crystallographic analyses, UV–vis and


fluorescence spectra, traces of cyclic and differential pulse voltammetry, plots of NMR titration and variable-temperature NMR experiments, DOSY NMR spectra, traces of ITC experiments and a


description of the computational experiments are provided in the Supplementary Information. Source data are provided with this paper. REFERENCES * Novoselov, K. S. et al. Electric field


effect in atomically thin carbon films. _Science_ 306, 666–669 (2004). Article  CAS  PubMed  Google Scholar  * Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent


approaches, derivatives and applications. _Chem. Rev._ 112, 6156–6214 (2012). Article  CAS  PubMed  Google Scholar  * Watson, M. D., Jäckel, F., Severin, N., Rabe, J. P. & Müllen, K. A


hexa-_peri_-hexabenzocoronene cyclophane: an addition to the toolbox for molecular electronics. _J. Am. Chem. Soc._ 126, 1402–1407 (2004). Article  CAS  PubMed  Google Scholar  * Evans, P.


J. et al. Synthesis of a helical bilayer nanographene. _Angew. Chem. Int. Ed._ 57, 6774–6779 (2018). Article  CAS  Google Scholar  * Zhao, X.-J. et al. Molecular bilayer graphene. _Nat.


Commun._ 10, 3057 (2019). Article  PubMed  PubMed Central  Google Scholar  * Moshniaha, L. et al. Aromatic nanosandwich obtained by _σ_-dimerization of a nanographenoid _π_-radical. _J. Am.


Chem. Soc._ 142, 3626–3635 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Young, R. M. & Wasielewski, M. R. Mixed electronic states in molecular dimers: connecting


singlet fission, excimer formation and symmetry-breaking charge transfer. _Acc. Chem. Res._ 53, 1957–1968 (2020). Article  CAS  PubMed  Google Scholar  * Zhang, Y. et al. Direct observation


of a widely tunable bandgap in bilayer graphene. _Nature_ 459, 820–823 (2009). Article  CAS  PubMed  Google Scholar  * Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E. & Heinz, T. F.


Observation of an electrically tunable bandgap in trilayer graphene. _Nat. Phys._ 7, 944–947 (2011). Article  CAS  Google Scholar  * Cao, Y. et al. Tunable correlated states and


spin-polarized phases in twisted bilayer–bilayer graphene. _Nature_ 583, 215–220 (2020). Article  CAS  PubMed  Google Scholar  * Matsumoto, I., Sekiya, R. & Haino, T. Self-assembly of


nanographenes. _Angew. Chem. Int. Ed._ 60, 12706–12711 (2021). Article  CAS  Google Scholar  * Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties


and reactions within discrete, self-assembled hosts. _Angew. Chem. Int. Ed._ 48, 3418–3438 (2009). Article  CAS  Google Scholar  * Juríček, M. et al. Induced-fit catalysis of corannulene


bowl-to-bowl inversion. _Nat. Chem._ 6, 222–228 (2014). Article  PubMed  Google Scholar  * Dale, E. J. et al. Supramolecular explorations: exhibiting the extent of extended cationic


cyclophanes. _Acc. Chem. Res._ 49, 262–273 (2016). Article  CAS  PubMed  Google Scholar  * Spenst, P. & Würthner, F. Photo- and redoxfunctional cyclophanes, macrocycles and catenanes


based on aromatic bisimides. _J. Photochem. Photobiol. C_ 31, 114–138 (2017). Article  CAS  Google Scholar  * Li, T. et al. Janusarene: a homoditopic molecular host. _Angew. Chem. Int. Ed._


56, 9473–9477 (2017). Article  CAS  Google Scholar  * Xu, Y. & Delius, M. The supramolecular chemistry of strained carbon nanohoops. _Angew. Chem. Int. Ed._ 59, 559–573 (2020). Article 


CAS  Google Scholar  * Benson, C. R. et al. Plug-and-play optical materials from fluorescent dyes and macrocycles. _Chem_ 6, 1978–1997 (2020). Article  CAS  Google Scholar  * Narita, A.,


Wang, X.-Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. _Chem. Soc. Rev._ 44, 6616–6643 (2015). Article  CAS  PubMed  Google Scholar  * Stępień, M., Gońka, E., Żyła,


M. & Sprutta, N. Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: synthetic routes, properties and applications. _Chem. Rev._ 117, 3479–3716 (2017). Article 


PubMed  Google Scholar  * Ito, H., Segawa, Y., Murakami, K. & Itami, K. Polycyclic arene synthesis by annulative _π_-extension. _J. Am. Chem. Soc._ 141, 3–10 (2018). Article  PubMed 


Google Scholar  * Hirai, M., Tanaka, N., Sakai, M. & Yamaguchi, S. Structurally constrained boron-, nitrogen-, silicon- and phosphorus-centered polycyclic _π_-conjugated systems. _Chem.


Rev._ 119, 8291–8331 (2019). Article  CAS  PubMed  Google Scholar  * Liang, N., Meng, D. & Wang, Z. Giant rylene imide-based electron acceptors for organic photovoltaics. _Acc. Chem.


Res._ 54, 961–975 (2021). Article  CAS  PubMed  Google Scholar  * Seifert, S., Shoyama, K., Schmidt, D. & Würthner, F. An electron-poor C64 nanographene by palladium-catalyzed cascade


C–C bond formation: one-pot synthesis and single-crystal structure analysis. _Angew. Chem. Int. Ed._ 55, 6390–6395 (2016). Article  CAS  Google Scholar  * Shoyama, K., Mahl, M., Seifert, S.


& Würthner, F. A general synthetic route to polycyclic aromatic dicarboximides by palladium-catalyzed annulation reaction. _J. Org. Chem._ 83, 5339–5346 (2018). Article  CAS  PubMed 


Google Scholar  * Mahl, M., Shoyama, K., Krause, A. M., Schmidt, D. & Würthner, F. Base‐assisted imidization: a synthetic method for the introduction of bulky imide substituents to


control packing and optical properties of naphthalene and perylene imides. _Angew. Chem. Int. Ed._ 59, 13401–13405 (2020). Article  CAS  Google Scholar  * Thordarson, P. Determining


association constants from titration experiments in supramolecular chemistry. _Chem. Soc. Rev._ 40, 1305–1323 (2011). Article  CAS  PubMed  Google Scholar  * bindfit (Supramolecular, 2020);


http://supramolecular.org * Dale, E. J. et al. ExCage. _J. Am. Chem. Soc._ 136, 10669–10682 (2014). Article  CAS  PubMed  Google Scholar  * Mecozzi, S. & Rebek, J. Jr The 55% solution: a


formula for molecular recognition in the liquid state. _Chem. Eur. J._ 4, 1016–1022 (1998). Article  CAS  Google Scholar  * Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent


interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. _Phys. Chem. Chem. Phys._ 18, 23067–23079 (2016). Article  CAS  PubMed 


Google Scholar  * Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. _Nature_ 466, 470–473 (2010). Article  CAS  PubMed  Google Scholar  * Ciesielski, A. et al.


Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. _Nat. Chem._ 6, 1017–1023 (2014). Article  CAS  PubMed  Google Scholar  *


Feyter, S. D. & Schryver, F. C. D. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. _Chem. Soc. Rev._ 32, 139–150 (2003). Article  PubMed  Google


Scholar  * Zhao, Y. et al. The emergence of anion-_π_ catalysis. _Acc. Chem. Res._ 51, 2255–2263 (2018). Article  CAS  PubMed  Google Scholar  * Das, A. & Ghosh, S. Supramolecular


assemblies by charge‐transfer interactions between donor and acceptor chromophores. _Angew. Chem. Int. Ed._ 53, 2038–2054 (2014). Article  CAS  Google Scholar  * Tayi, A. S. et al.


Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. _Nature_ 488, 485–489 (2012). Article  CAS  PubMed  Google Scholar  * Kang, S. J. et al. A


supramolecular complex in small‐molecule solar cells based on contorted aromatic molecules. _Angew. Chem. Int. Ed._ 51, 8594–8597 (2012). Article  CAS  Google Scholar  * Zhang, J., Jin, J.,


Xu, H., Zhang, Q. & Huang, W. Recent progress on organic donor-acceptor complexes as active elements in organic field-effect transistors. _J. Mater. Chem. C_ 6, 3485–3498 (2018). Article


  CAS  Google Scholar  * Jiang, H. & Hu, W. The emergence of organic single‐crystal electronics. _Angew. Chem. Int. Ed._ 59, 1408–1428 (2019). Article  Google Scholar  * Sheldrick, G. M.


SHELXT—integrated space-group and crystal-structure determination. _Acta Crystallogr. A_ 71, 3–8 (2015). Article  Google Scholar  * Sheldrick, G. M. A short history of SHELX. _Acta


Crystallogr. A_ 64, 112–122 (2008). Article  CAS  PubMed  Google Scholar  * Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated


structure factors. _Acta Crystallogr. C_ 71, 9–18 (2015). Article  CAS  Google Scholar  * Spek, A. L. Single-crystal structure validation with the program PLATON. _J. Appl. Crystallogr._ 36,


7–13 (2003). Article  CAS  Google Scholar  * Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. _J. Appl.


Crystallogr._ 47, 806–809 (2014). Article  CAS  Google Scholar  * Spek, A. L. Structure validation in chemical crystallography. _Acta Crystallogr. D_ 65, 148–155 (2009). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? _Acta Crystallogr. D_ 69, 1204–1214 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. _Phys. Chem. Chem. Phys._


22, 7169–7192 (2020). Article  CAS  PubMed  Google Scholar  * Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic and biochemical systems. _Angew. Chem. Int.


Ed._ 59, 15665–15673 (2020). Article  CAS  Google Scholar  * Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self consistent tight-binding quantum


chemical method with multipole electrostatics and density-dependent dispersion contributions. _J. Chem. Theory Comput._ 15, 1652–1671 (2019). Article  CAS  PubMed  Google Scholar  * Frisch,


M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2009). * Shao, Y. H. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. _Mol. Phys._ 113, 184–215


(2015). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for financial support (grant no. WU


317/20-2). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany Magnus Mahl, M. A. Niyas, Kazutaka Shoyama & Frank


Würthner * Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg, Germany Kazutaka Shoyama & Frank Würthner Authors * Magnus Mahl View author publications You can also


search for this author inPubMed Google Scholar * M. A. Niyas View author publications You can also search for this author inPubMed Google Scholar * Kazutaka Shoyama View author publications


You can also search for this author inPubMed Google Scholar * Frank Würthner View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS F.W. initiated


and supervised the entire work. M.M. performed the synthesis and complexation experiments. M.M. and M.A.N. grew the single crystals for crystallographic analysis. K.S. conducted the


crystallographic measurements and analysis. M.A.N. and K.S. conducted the DFT calculations. All authors contributed to writing the manuscript. CORRESPONDING AUTHOR Correspondence to Frank


Würthner. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Chemistry_ thanks the anonymous reviewers for their


contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Details of synthesis, crystallographic analysis and computation. Supplementary Figs. 1–22 and Tables 1–15. SUPPLEMENTARY


DATA 1 Crystal structure of monolayer 1; CCDC 2068629. SUPPLEMENTARY DATA 2 Crystal structure of polylayer _(COR-1-COR)n; CCDC 2068630. SUPPLEMENTARY DATA 3 Crystal structure of hexalayer


(COR-1-COR)2; CCDC 2068631. SUPPLEMENTARY DATA 4 Crystal structure of tetralayer COR-1-1-COR; CCDC 2068632. SUPPLEMENTARY SOURCE DATA 1 Source Data Supplementary Figs. 7, 11a–d, 12a–c,


13b–d, 14a–c and 15. Fit of proton-signals from a 1H NMR titration experiment. Fit of UV–vis titration experiments of nanographene 1 in chloroform solutions. Fit of fluorescence titration


experiments of nanographene 1 in chloroform solutions. Comparison of the average Gibbs free energies from UV–vis and fluorescence titration experiments with different guest molecules. SOURCE


DATA SOURCE DATA FIG. 4 Computed values of interaction energies from ALMO-EDA. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Mahl, M., Niyas, M.A.,


Shoyama, K. _et al._ Multilayer stacks of polycyclic aromatic hydrocarbons. _Nat. Chem._ 14, 457–462 (2022). https://doi.org/10.1038/s41557-021-00861-5 Download citation * Received: 11 March


2021 * Accepted: 19 November 2021 * Published: 07 February 2022 * Issue Date: April 2022 * DOI: https://doi.org/10.1038/s41557-021-00861-5 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative